# Understanding TCP/IP

## Overview

- Protocols are essential
- 1980s/1990s vendors designed their own
- TCP/IP emerged as the dominant protocol
- 99% of networks (including Internet) use TCP/IP
- A foundation, not comprehensive

## TCP/IP

- Transmission Control Protocol / Internet Protocol
- Non-proprietary (Nobody owns it)
- Routable (can switch to different networks)
- Underpins the internet
- Group of protocols
  - Addressing
  - Naming

•

• Data delivery

#### Transmission Control Protocol/Internet Protocol

- Two Protocols
  - Transmission Control
  - Internet Protocol
- 100s of actual protocols implemented
- Implemented on many OS's
- TCP Guaranteed information delivery
- Based on OSI 7 layer model
- DoD model maps 4 layers on OSI 7 layer model

| OSI Model    | TCP/IP Model<br>(DoD Model) | TCP/IP – Internet<br>Protocol Suite |  |  |
|--------------|-----------------------------|-------------------------------------|--|--|
| Application  |                             | Telnet, SMTP, POP3,                 |  |  |
| Presentation | Application                 | FTP, NNTP, HTTP,<br>SNMP, DNS, SSH, |  |  |
| Session      |                             |                                     |  |  |
| Transport    | Transport                   | TCP, UDP                            |  |  |
| Network      | Internet                    | IP, ICMP, ARP, DHCP                 |  |  |
| Data Link    | Motoric Asses               | Ethernet DDD ADS                    |  |  |
| Physical     | Network Access              | Ethernet, PPP, ADSL                 |  |  |

## TCP/IP 4 Layers

- Most Protocols at the Process/Application Layer
  - HTTP Hypertext Transfer Protocol
  - FTP File Transfer Protocol
  - SMTP Simple Mail Transfer Protocol
  - POP Post Office Protocol
- Host to Host 2 protocols
  - TCP Transmission Control Protocol
  - UDP User Datagram Protocol
- Internet Backbone of the TCP/IP
  - ICMP Internet Control Message Protocol
  - ARP Address Resolution Protocol
- Network Layer Describes the type of network access method

## Process/Application Layer Protocols

- Layer provides differentiation and flexibility
- Need to know about the following for A+
- TFTP Trivial File Transfer Protocol Protocol
  - Port 69
  - Light weight FTP
  - UDP (Conectionless)
  - 5 Commands
  - Mainly used for configuration transmission
- CIFS Common Internet File System
  - MS enhancement of SMB
  - Port 445
  - Allows filesharing across OS's
  - Files and Printers
  - Default on Windows systems since Win 2000
- DHCP Dynamc Host Configuration Protocol
  - Dynamic IP address and IP information
  - Reduces Administrator input
  - Ports 67, 68

- DNS Domain Name System
  - Resolves URL (Uniform Resource Locator) to a physical IP Address
  - Port 53
- FTP File Transfer Protocol
  - Copy, List, and Transfer of files.
  - Directory Management
  - Login required
  - Port 20/21
  - Also SFTP and FTPS
- HTTP Hypertext Transfer Protocol
  - 1991
  - First effective Client-Server request-response protocol
  - Insecure Plain text transmission
  - Port 80
- HTTPS Hypertext Transfer Protocol Secure
  - 1994
  - Port 443
  - Security through (Encrypted Transmission)
    - SSL Secure Sockets Layer (Certificates. Sometimes expire)
    - TLS Transfer Layer Security

- IMAP Internet Message Protocol
  - Email
  - Port 143
  - Replaces insecure POP3
  - Remains connected to server (Unlike POP3)
  - Stores emails on the server (Unlike POP3)
  - Allows multiple clients to a single mail box
    - Each client sees messages in real-time

- LDAP Lightweight Directory Access Protocol
  - Based on X.500 standard
  - Allows access to information stored in an information directory
    - LDAP directory
    - LDAP database
  - Uses ACL (Access Control Lists) for permissions
  - Port 389

#### • NetBIOS/NetBT

- Network Basic Input/Output System
- API (Application Programming Interface) that allows computers to communicate across the network.
- Layer 5 of the OSI model.
  - NetBIOS running over TCP/IP is called NetBT
- Naming service (name registration and resolution)
- Datagram distribution service (for connectionless)
- Session management service (for connection orientated)
- MS network clients had a NetBIOS name that was the network name
  - Names were resolved with an IP address with a WINS (windows internet name service)
  - Eventually they used DNS
- Port 137/139

- POP3 Post Office Protocol
  - Original protocol for email systems
  - Replaced by IMAP4
  - Port 110
- SFTP Secure File Transfer Protocol
  - Secure alternative to FTP
- SMB Server Message Block / CIFS Common Internet File System
  - IBM development enhanced by Microsoft (and other vendors)
  - Shares files, printers and network resources
  - Similar to FTP but more options
  - Port 445
  - CIFS Developed by MS to share files and printers

- RDP Remote Desktop Protocol
  - Microsoft developed
  - Connection to remote computers
  - As if you were sitting at the PC
  - All keyboard and mouse commands encrypted
  - Supports sound, drive, port and network printer redirection
  - Remote workers and Technical Support
  - Port 3389
- SMTP Simple Mail Transfer Protocol
  - Commonly used to send email messages
  - Push protocol
  - Server to Server communication as well as Server to Client
  - Port 25

- SNMP Simple Network Management Protocol
  - Gathers and manages Network performance information
  - Port 161, 162
  - SNMP Server Management device
    - Collects data from routers/switches
- SSH Secure Shell
  - Used by Telnet
  - Remote PC Login
  - Common client OpenSSH
  - Port 22
- Telnet
  - Terminal emulation protocol
  - Remote Login to computers
  - Text only
  - Insecure Plain text
  - Port 23

## Host To Host (Transport) Layer Protocols

- UDP User Datagram Protocol
  - Connectionless
  - Faster
  - Best Effort (no flow control)
  - VOIP, Streaming Music
- TCP Transmission Control Protocol
  - Connection Orientated
  - Slower
  - Guarantee (Reassemble and resending) Email, Web Browsing

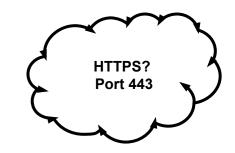
|     | ТСР                                                             | UDP                            |
|-----|-----------------------------------------------------------------|--------------------------------|
|     | Reliable                                                        | Unreliable                     |
|     | Connection-oriented                                             | Connectionless                 |
|     | Segment retransmission<br>and flow control through<br>windowing | No windowing or retransmission |
| ng) | Segment sequencing                                              | No sequencing                  |
| 01  | Acknowledge segments                                            | No acknowledgement             |

## TCP and UDP

- Port Numbers
  - Keeps track of connections
  - Ensure right protocols are used
  - Differing applications use different ports
  - •
  - Think of Cable TV
    - IP Address is house (where into sent)

HTTP?


DNS?


Port 53

- Channels fixed genres
- Or Imagine Block of flats mail room
- •
- 65536 ports per IP Address
  - 0 to 1023 Well known Ports
  - 1024 to 49151 Registered Ports
  - 49152 to 65535 Vendor Ports



SSH? Port 22





| Service       | Protocol | Port(s) |  |
|---------------|----------|---------|--|
| FTP           | ТСР      | 20,21   |  |
| SSH           | ТСР      | 22      |  |
| Telnet        | ТСР      | 23      |  |
| SMTP          | ТСР      | 25      |  |
| DNS           | TCP/UDP  | 53      |  |
| DHCP          | UDP      | 67,68   |  |
| TFTP          | UDP      | 69      |  |
| HTTP          | ТСР      | 80      |  |
| POP3          | ТСР      | 110     |  |
| NetBIOS/NetBT | ТСР      | 137,139 |  |
| IMAP4         | ТСР      | 143     |  |
| SNMP          | UDP      | 161,162 |  |
| LDAP          | ТСР      | 389     |  |
| HTTPS         | ТСР      | 443     |  |
| SMB/CIFS      | ТСР      | 445     |  |
| RDP           | ТСР      | 3389    |  |

## Internet Layer Protocols

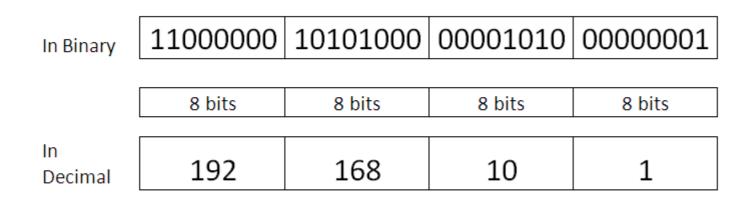
- IP Internet Protocol
- Manages logical network addresses
- Gets data from one place to another (even if there are many hops)
- Three Support protocols
  - ICMP Delivers Error messages
    - Ping uses ICMP
  - ARP resolves logical IP addresses to physical MAC addresses
  - RARP Reverse ARP resolves MAC addresses to IP addresses

## IP Addressing

- IPv4 and IPv6
- Each device must have a unique address
- IPv4 32 bit hierarchical address
  - Example 192.168.10.55
  - Each number is 8 bits (1 byte)
  - Each number called Octet
  - Above address in Binary as PC sees it: 11000000 10101000 00001010 00110111

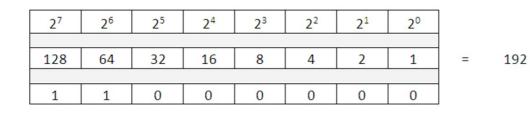
## IPv4 Addressing

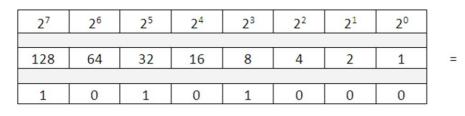
Network segment

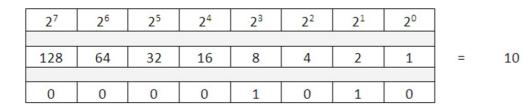

Node segment

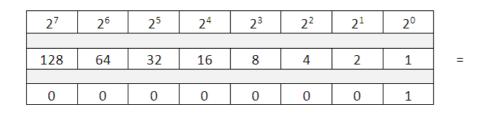
#### Binary 11010000.01111011.00101101.00010010

Decimal 208.123.45.18


## Binary


| Octet - 1 | Octet - 2 | Octet - 3 | Octet - 4 |
|-----------|-----------|-----------|-----------|
|-----------|-----------|-----------|-----------|





|--|

## **Binary Continued**

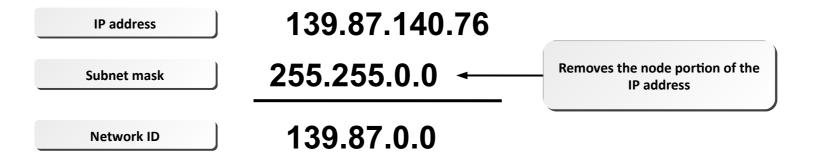








## IP Address Parts


- All Ip addresses have a:
  - Network ID
  - Host ID
- Network comes before Host
  - No specified length for Network ID
  - In Octets but only 32 bits in total
- All addresses must be unique
- Network and host cannot be all 0s
  - Host ID portion of 0 means this network
- Network and host cannot be all 1s
  - Host ID portion of 1 means "all hosts on this network" broadcast address

## Subnet Mask

- Same format as IP an IP address
- Defines where network ID ends and Host address begins
- Anything marked as 255 defines the Network ID
- Anything else defines the Host ID

| Subnet Mask 255.255.255.0 |                                           |          |          |         |  |  |  |
|---------------------------|-------------------------------------------|----------|----------|---------|--|--|--|
|                           | 24 bits for Network ID 8 bits for Host ID |          |          |         |  |  |  |
| Decimal                   | 255                                       | 255      | 0        |         |  |  |  |
| Binary                    | 11111111                                  | 11111111 | 11111111 | 0000000 |  |  |  |

#### Subnet Masks

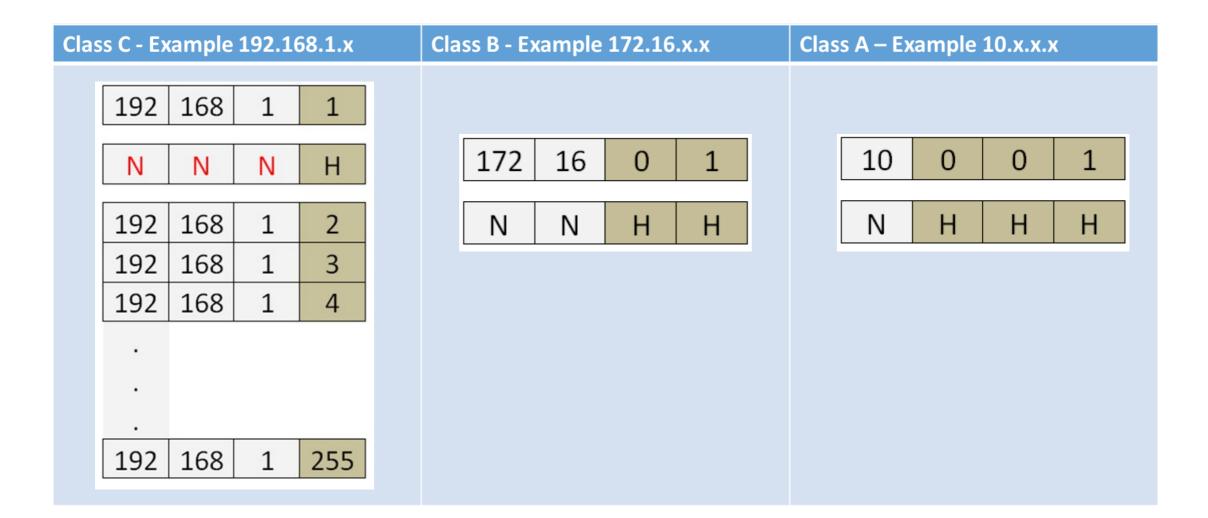


## Subnet Mask Continued

| Subnet Mask 255.255.255.0 |                                           |          |          |         |  |  |  |
|---------------------------|-------------------------------------------|----------|----------|---------|--|--|--|
|                           | 24 bits for Network ID 8 Bits for Host ID |          |          |         |  |  |  |
| Decimal                   | 255                                       | 255      | 255      | 0       |  |  |  |
| Binary                    | 11111111                                  | 11111111 | 11111111 | 0000000 |  |  |  |

|         | IP Address 192.168.10.55 |          |          |          |  |  |  |  |
|---------|--------------------------|----------|----------|----------|--|--|--|--|
| Decimal | Decimal 192 168 10 55    |          |          |          |  |  |  |  |
| Binary  | 11000000                 | 10101000 | 00001010 | 00110111 |  |  |  |  |

## IPv4 Address Classes

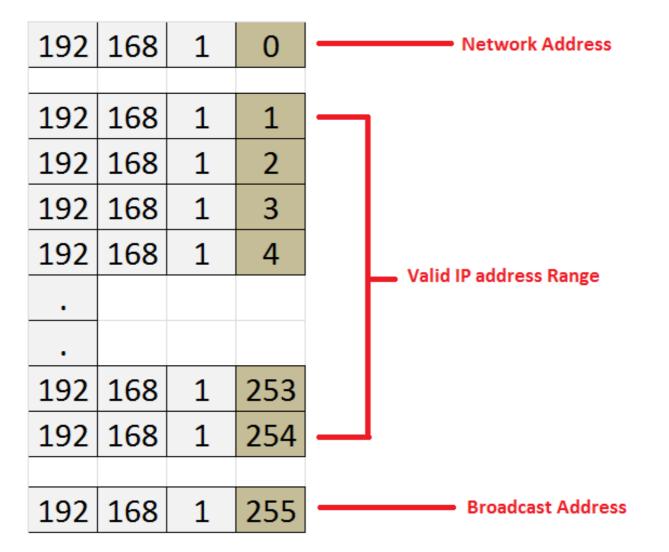

#### • Classes designated on first Octet

| Class | Range      | Subnet Mask   | Comments                                                                                                                                                                                                   |
|-------|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | 0 to 127   | 255.0.0.0     | Very Large Networks<br>First 8 Bits Network ID, remaining 24 bits Host ID<br>126 Network A addresses available – none available<br>Telecom giants and very large global companies                          |
| В     | 128 to 191 | 255.255.0.0   | Medium Sized Networks<br>First 16 Bits Network ID, remaining 16bits Host ID<br>(2 <sup>14</sup> )16384 Networks with up to (2 <sup>16</sup> -2) 65534 hosts on each network<br>Microsoft, Exxon Mobile etc |
| С     | 192 to 223 | 255.255.255.0 | Smaller Networks<br>First 24 Bits Network ID, remaining 8 bits Host ID<br>(2 <sup>21</sup> )2097152 networks with up to (2 <sup>8</sup> -2) 254 hosts on each network. Most companies use<br>class C.      |
| D     | 224 to 239 | N/A           | Reserved for multicasts (sending messages to multiple systems)                                                                                                                                             |
| E     | 240 to 255 | N/A           | Reserved for testing                                                                                                                                                                                       |

## IPv4 Address Classes

- MIT has Class A network 18.0.0.0
- Nobody else can use 18.0.0.0
- Internal company networks can use this range as addresses will get translated at router

## Class Examples




## Further Class Maths (For Information only)

| ſ | Vetwork   |                 |                   |          |   | Host                   |                              |                                       |                   |
|---|-----------|-----------------|-------------------|----------|---|------------------------|------------------------------|---------------------------------------|-------------------|
|   |           |                 |                   |          |   | Class - A<br>Class - B | 24 host bits<br>16 host bits | $2^{24} =$<br>$2^{16} =$<br>$2^{8} =$ | 16777216<br>65536 |
| ſ | Class - A | 8 network bits  | 2 8 =             | 256      |   | Class - C              | 8 host bits                  | 2° =                                  | 256               |
|   | Class - B | 16 network bits | 2 <sup>16</sup> = | 65536    |   |                        | have the values of a         | ll Os or all                          | 1s so need to     |
|   | Class - C | 24 network bits | 2 <sup>24</sup> = | 16777216 | S | subtract 2 f           | rom the totals               |                                       |                   |

| Class - A | 24 host bits | 2 | 24 | = | 16777216-2 |
|-----------|--------------|---|----|---|------------|
| Class - B | 16 host bits | 2 | 16 | = | 65536-2    |
| Class - C | 8 host bits  | 2 | 8  | = | 256-2      |

## Class C valid IP address example



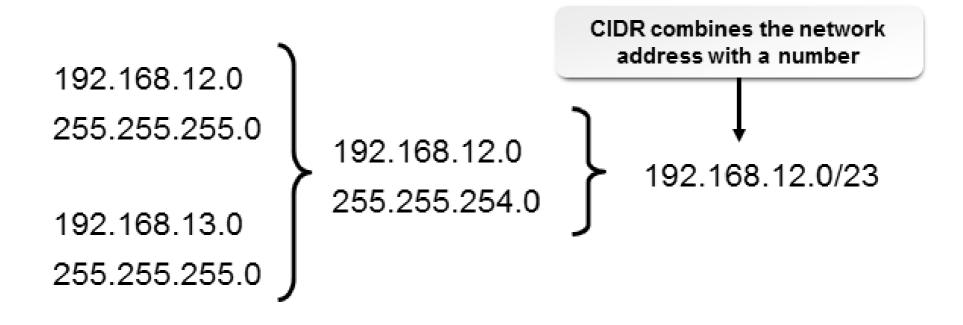
## Classes Default Subnet Masks

| • | Class - A | N. H. H. H | 255.0.0.0     |
|---|-----------|------------|---------------|
| • | Class - B | N. N. H. H | 255.255.0.0   |
| • | Class - C | N. N. N. H | 255.255.255.0 |

- •
- IP addresses in range 127.x.x.x are only for testing
- IP address can be written in shorthand indicating the network portion of the address.
  - 10.0.0/8 indicates first 8 bits are network ID and remaining 24 bits Host ID
  - 192.168.1.0/24 Class C with default subnet mask

## CIDR- Classless Inter-Domain Routing

- Alternative to subnetting that allows address flexibility
- No fixed dividing line between network and host
- Focuses on the number of bits used for the network address
- Class A default mask 11111111.00000000.0000000.00000000 (/8)
- Class B default mask 1111111111111111100000000.0000000 (/16)
- Do not have to use entire Octet of bits for Network ID
- With CIDR you can have a mask of 255.240.0.0
  - 11111111111000.0000000.00000000


## CIDR- Classless Inter-Domain Routing

- Can be used to reference supernets
- Class C example
  - How to combine 192.168.0.0 and 192.168.1.0
  - Class C Subnet 255.255.255.0
  - But with CIDR 192.168.0.0/23
  - 1<sup>st</sup> network 1100000 10101000 0000000 0000000

  - With CIDR specifying first 23 bits
    - 255.255.254.0

    - Network only blocks first 23 digits with the red digit allowing 1 or 0
- VLSM Variable Length Subnet Mask

## CIDR Further Example

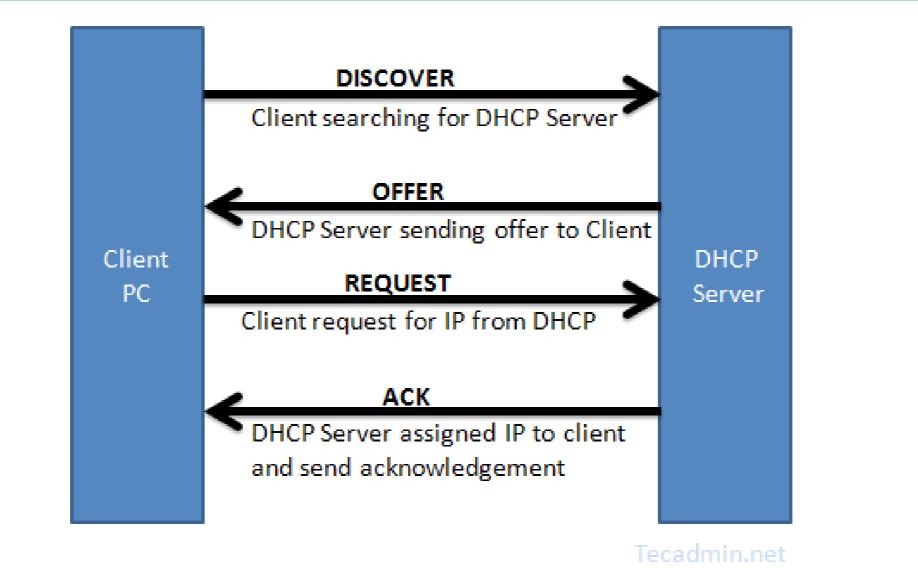


## CIDR- Classless Inter-Domain Routing

- http://www.subnet-calculator.com
- https://www.ultratools.com/tools/netMask
- http://www.csgnetwork.com/ipaddconv.html
- https://www.ultratools.com/tools/yourIPResult

# TCP/IP Choices

• Manual


Hardest option as need to keep track. Best for small networks.

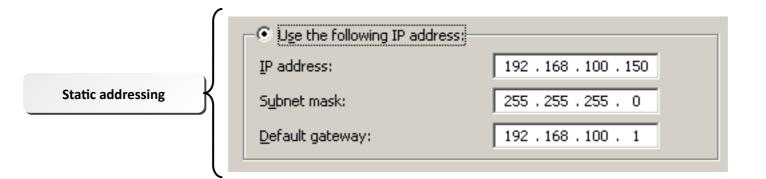
- Automatic (using DHCP). Admin sets up a scope, letting server handle all the requests. MAC addresses important for this. Best option.
- Hybrid Approach. Manual and automatic. Client pool and static IP for fixed devices. Needs careful administration.

## DHCP – Dynamic Host Configuration Protocol

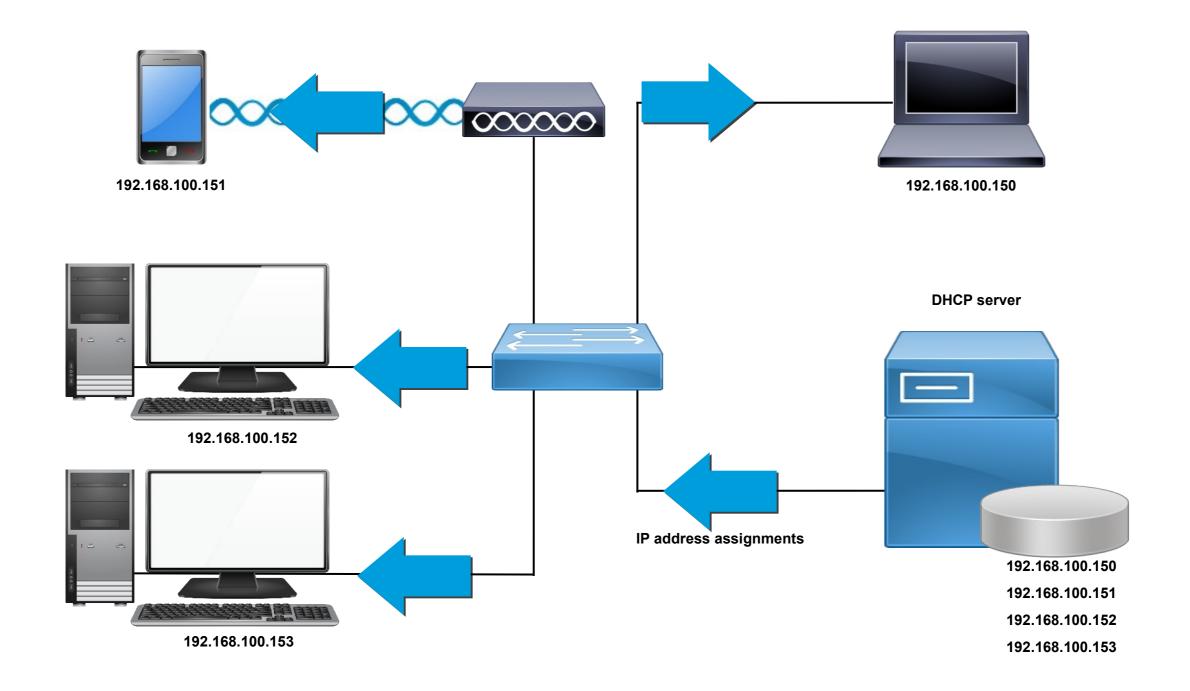
- DHCP Provides IP information to a client
  - Called a lease.
  - Only valid for a defined period, must be renewed periodically
    - Can specify DHCP IP addresses to certain clients
  - A lease typically contains (but can do so much more)
    - IP Address
    - Subnet Mask
    - Default Gateway (Access to the WWW)
    - DNS Server address
  - Client on boot sends a broadcast called DHCP DISCOVER
  - DHCP Server responds privately
  - Alternative to Static IP addressing
    - Some equipment will have static addresses (Routers, Servers, Printers)

#### **DHCP Request Process**




## **DHCP Request Process**

- Discover and Request are BROADCAST
  - Every computer sees the request can slow network performance
  - Broadcast requests do not go through routers
    - Make Router DHCP Server
    - Install a DHCP Relay Agent
- Offer and Ack(nowledgement) are direct
- Uses ports 67 and 68
- •
- No DHCP server then APIPA address (169.254.x.x)
  - Automatic Private IP addressing


## DHCP – Dynamic Host Configuration Protocol

- DHCP Scopes
  - Contains information it can supply to a client
  - At least one but can have more than one
  - •
  - Address Pool Range of addresses for clients. (Need subnet mask in IPv4)
  - Lease Duration expiry time
  - Address Reservations Some IP addresses reserved for certain clients. Based on MAC address e.g. Printers, servers etc
  - Scope Options Extra items such as address of default gateway, DNS Servers

#### Static and Dynamic Addressing



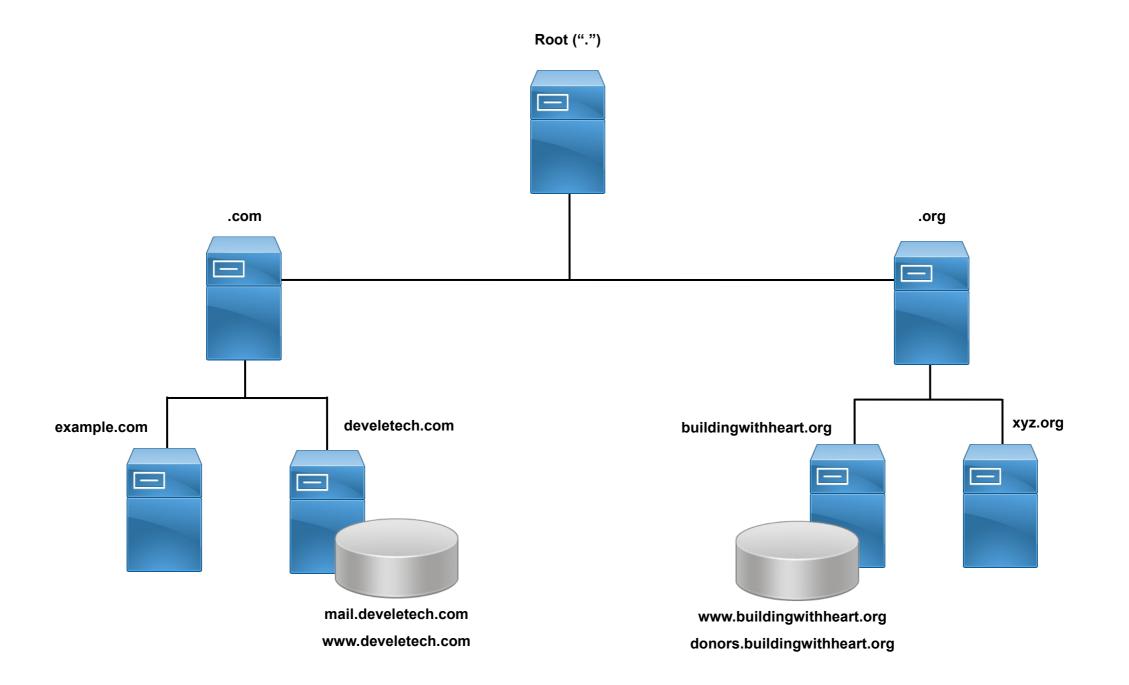
|                    | ſ                             | Obtain an IP address automatically |         |      |  |  |   |
|--------------------|-------------------------------|------------------------------------|---------|------|--|--|---|
|                    | Use the following IP address: |                                    |         |      |  |  |   |
|                    |                               | IP address:                        |         |      |  |  |   |
| Dynamic addressing | К                             | Sybnet mask:                       |         |      |  |  | 1 |
|                    |                               | Default gateway:                   |         |      |  |  |   |
|                    |                               | Obtain DNS server address au       | tomatic | ally |  |  |   |



#### **Network Connection Details**

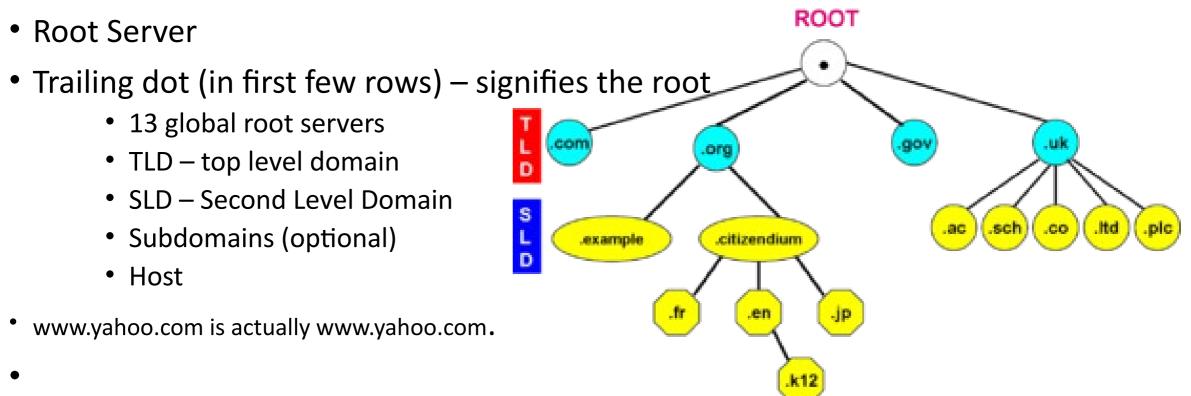
×

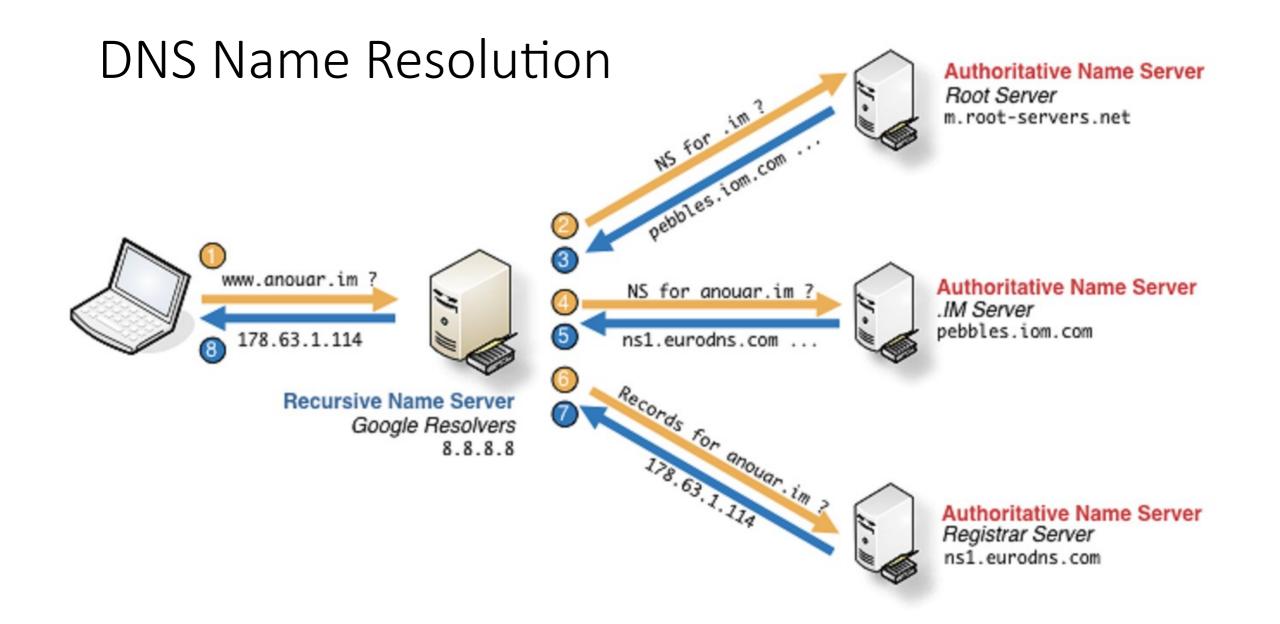
Network Connection Details:

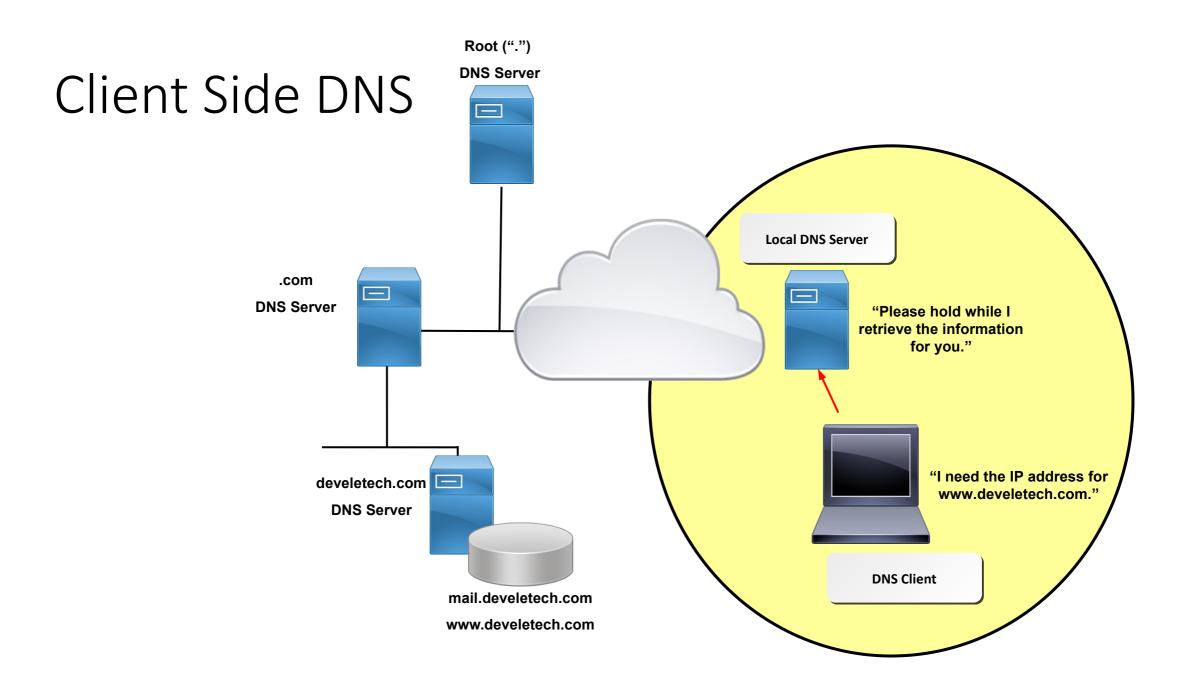

| <b>D</b> .                |                                   |  |  |
|---------------------------|-----------------------------------|--|--|
| Property                  | Value                             |  |  |
| Connection-specific DNS S |                                   |  |  |
| Description               | Intel(R) Wireless-N 7260          |  |  |
| Physical Address          | 80-86-F2-A7-A9-22                 |  |  |
| DHCP Enabled              | Yes                               |  |  |
| IPv4 Address              | 192.168.1.8                       |  |  |
| IPv4 Subnet Mask          | 255.255.255.0                     |  |  |
| Lease Obtained            | Monday, July 27, 2015 10:29:23 AM |  |  |
| Lease Expires             | Tuesday, July 28, 2015 1:28:05 PM |  |  |
| IPv4 Default Gateway      | 192.168.1.1                       |  |  |
| IPv4 DHCP Server          | 192.168.1.1                       |  |  |
| IPv4 DNS Server           | 192.168.1.1                       |  |  |
| IPv4 WINS Server          |                                   |  |  |
| NetBIOS over Tcpip Enabl  | Yes                               |  |  |
| Link-local IPv6 Address   | fe80::ad87:bebb:f72b:c41c%3       |  |  |
| IPv6 Default Gateway      |                                   |  |  |
| IPv6 DNS Server           |                                   |  |  |
|                           |                                   |  |  |
|                           |                                   |  |  |
|                           |                                   |  |  |
|                           |                                   |  |  |
|                           | Close                             |  |  |
|                           |                                   |  |  |

#### APIPA – Automatic Private IP Addressing

- Default configuration if no DHCP response
- APIPA Network 169.254.0.0 and subnet 255.255.0.0
- Immediately suspect a network problem (ipconfig confirms)
- If no need to connect to internet, all PCs will configure themselves!
- Increased broadcast traffic


## DNS – Domain Name System


- Resolves hostnames to IP Addresses
- Uses UDP or TCP port 53
- Local DNS should be placed in the DMZ
- Same on Intranet as the Internet
- ISP's maintain DNS for companies.
  - Two DNS servers needed for redundancy
- DNS Server has a zone file
  - (see https://en.wikipedia.org/wiki/Zone\_file)
- Decides when we enter a URL where the server sits
  - Ping www.bbc.co.uk and note the IP address
  - Cascades requests upwards




#### Internet DNS

- First check zone file
- Then cache a temporary store of recent resolved names and IP addresses







# DNS Zone File Format

- 5 Columns
  - Name of the server or computer
  - IN means internet
  - Record Type See next slide
  - Address of the computer
  - Comments must have semicolon
- Managed by the DNS administrator

## Zone File common DNS Record types

- SOA Start of Authority
- NS Name Server (Name or address of the DNS server for the zone)
- MX Mail Exchanger (Name or address of email server)
- A IPv4 host record
- AAAA quad A Host record for IPv6
- CNAME Canonical Name. An alias to allow multiple names to be assigned to the same host or address

## Public v Private IP Addresses

- All addresses on the internet are public
- Must be unique
- These IP Addresses are purchased
- Limited number of public addresses
- Therefore private addresses
  - Not exposed or routable on the internet
  - Means addresses can be repeated in differing networks
  - But given addresses are now used, how do they contact internet?

## NAT – Network Address Translation

#### • NAT

- Runs on a router
- Translates internal IP addresses to external IP addresses
- When you request resource from bbc.co.uk, the packets arrive at your PC
- Reservations for Private IP addresses (for private, non routable IP addresses)
- These networks are hidden from the internet

| Class | IP Address Range               | Default Subnet Mask | Number of Hosts |
|-------|--------------------------------|---------------------|-----------------|
| А     | 10.0.0.0 to 10.255.255.255     | 255.0.0.0           | 16.7 Million    |
| В     | 172.16.0.0 to 172.31.255.255   | 255.240.0.0         | 1 Million       |
| С     | 192.168.0.0 to 192.168.255.255 | 255.255.0.0         | 65536           |

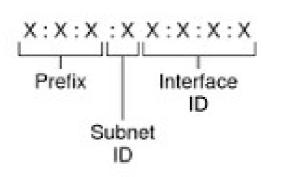
## IPv6

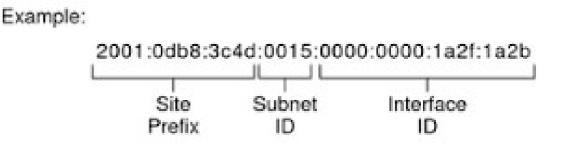
- IPv4 limitations:
  - running out of addresses!
  - Difficult to configure (Subnet and CIDR)
  - 32 bits almost 4.3 billion addresses, but only 250 useable and taken
- IPv5 was experimental Internet Streaming Protocol
- IPv6
  - 128 bit addresses
  - 3.4 x 10<sup>38</sup> addresses!
  - More difficult to remember
  - Easy configuration
  - Enhanced Flexibility
  - Backward compatible (seamless transition)

#### IPv6 Address Further example

#### 2001:0DB8:AC10:FE01:0056:0000:0000:0000/64

An example IPv6 address


2001:0DB8:AC10:FE01:0056:0000:0000:0000

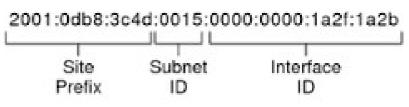

**Hexadecimal format** 

128-bit binary format

# IPv6 Addressing

- Eight 16bit fields
- Hexadecimal Digits (not case sensitive)
- 3 Types of Address:
  - Unicast assigned to a single node
  - •
  - Anycast assigned to multiple nodes Packets delivered to closest node One-to-nearest addressing






- •
- Multicast used by multiple hosts and allows communication to groups of computers

# IPv6 Addressing

- No broadcast addresses (use multicast)
- A network interface can have more than one address
- First 4 fields (64 bits) network and subnetwork
  - Actually first 56 bits are routing prefix
  - Next 8 are the Subnet ID
- Last 4 fields are interface ID (like hostID on IPv4)
  - Can be created from MAC address
  - Or assigned by a DHCPv6 Server
  - Or Randomly assigned
  - Or Manually configured





X:X:X :X X :X :X :X

Subnet

ID

Interface

Prefix

## IPv6 Addressing

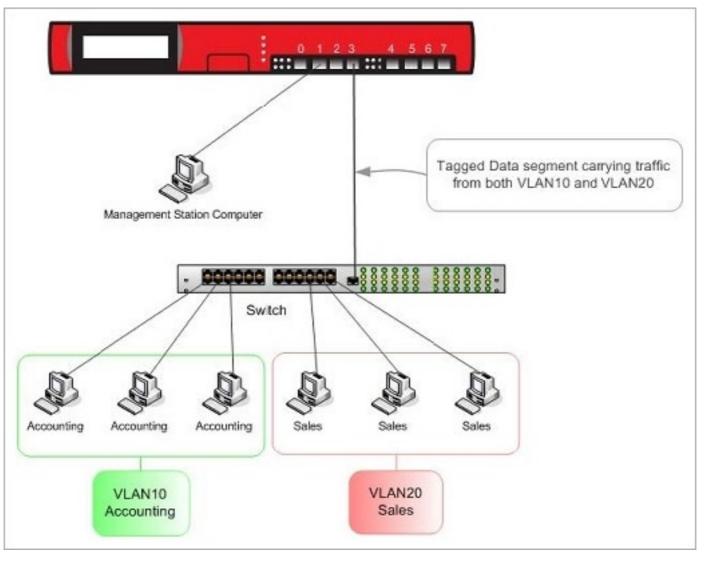
- An IPv6 address could be written as 2001:0db8:3c4d::/48
- /48 indicates bits in routing prefix
- Long addresses
  - can eliminate zeros as follows:
    - 2001:0db8:3c4d:0012:0000:0000:1234:56ab
    - 2001:db8:3c4d:12:0:0:1234:56ab
  - can also remove consecutive groups of zeros with ::
    - 2001:0db8:3c4d:0012:0000:0000:1234:56ab
    - 2001:db8:3c4d:12::1234:56ab
    - Can only do on one group though
      - Example 2001::1ab4::5468 what position is 1ab4 ?

## Mixed v4 and v6 Networks

- IPv6 backwards compatible with IPv4
  - sets first 80 bits to zero
  - next 16 bits to 1
  - Final 32 to the IPv4 address
  - Example IPv6 address on IPv4 network ::ffff:192.168.1.19

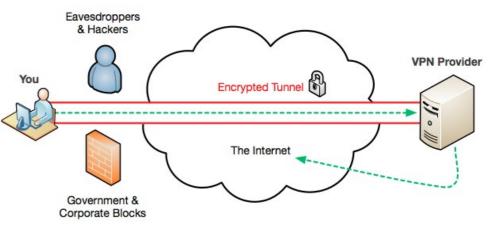
## IPv6 Reserved Addresses

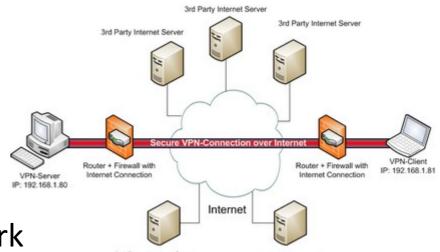
- IPv6 APIPA
  - All IPv6 must have a Local Link Address
  - fe80::/10
  - Non routable
- Loopback Address (IPv4 127.0.0.1)
  - ::1/128 (written as ::1)
- Global Addresses (for internet use)
  - 2000::/3
- Multicast Address
  - FF00::/8


## IPv6 Address Ranges

| Address         | Use                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------|
| 0:0:0:0:0:0:0:0 | Can be written as ::<br>Equivalent to 0.0.0.0 in IPv4.<br>Means host is not configured. |
| 0:0:0:0:0:0:1   | Can be written as ::1<br>Equivalent to 127.0.0.1 in IPv4.                               |
| 2000::/3        | Global Unicast address range for use on the internet                                    |
| FC00::/7        | Unique local unicast address range                                                      |
| FE80::/10       | Link local unicast range                                                                |
| FF00::/8        | Mulitcast range                                                                         |

## Virtual Networks


- Two types:
  - Virtual Local Area Network
  - Virtual Private Network
- VLANs created by using a managed switch
  - STP (Spanning tree protocol)
  - STP ensures no infinite network loops (data being sent between switches)
- VLAN Benefits
  - Broadcast Traffic is reduced
  - Security is increased
  - PC's in multiple locations can all belong to the same VLAN
  - Reconfiguration is easy


#### Virtual Networks



## Virtual Networks

- Virtual Private Networks
  - Allows remote users to be on internal network
  - Data is TUNNELLED from client PC using encapsulation and encryption
  - Allows two networks to be joined as if local
  - Requires dedicated hardware or software
  - WIN 10 includes VPN software
    - Start > Settings > Network&Internet > V





## Exam Essentials

- IPv4 Addressing
  - 32 bit
  - Four octet notation
  - Needs a Subnet mask
  - Subnet Mask octet notation
- IPv6 Addressing
  - 128 bit addresses
  - Eight fields of four hex characters
  - Shorthand notations

## Exam Essentials

- Know about DHCP and DNS
- Know common TCP/IP ports
  - HTTP, FTP, POP3, SMTP, Telnet, HTTPS
- Identify IP address classes A, B and C
- Know the private IP addresses ranges
  - 10.0.0/8
  - 172.16.0.0/16
  - 192.168.0.0/16
- Know the APIPA range 169.254.0.0/16
  - No APIPA in IPv6

## Exam Essentials

- Know IPv6 three types of addresses
  - Unicast single node on network
  - Anycast for a small group of systems, delivery to the closest node
  - Multicast delivers to all computers in a group
- Recognise IPv6 Special addresses