220-1101

Internal Expansion Storage Devices Power Supplies

- Also called an Adapter Card
- Must match the bus type its plugged into
- Most common
 - Video
 - Multimedia
 - Communications
 - Input/Output

- Video
 - PCIe Preferred
 - PCI Uncommon
 - AGP Obsolete
 - Memory
 - Onboard shares memory with processor
 - 1-2Gb for Everyday use
 - 8Gb GDDR5 for Gaming (24Gb GDDR6 available)
- Soundcard
 - Small 3.5mm jacks
 - Older cards have a DA15 game port

- NIC Network Interface Card
 - RJ45 (Registered Jack)
 - Fibre
 - BNC
 - Wireless
- Modem
 - RJ11

- Input / Output
 - All cards are this!
 - Covers remaining cards
 - USB Expansion
 - eSata
 - SCSI

Configuration

- Plug and Play
- Check if settings need to be changed in BIOS

Expansion Card Configuration

- Plug and Play installation
 - Add Hardware Wizard.
 - Scan for new hardware.
 - Select driver or accept default driver.
- Manual installation
 - When Plug and Play installation is not successful.
 - Download driver from manufacturer website.
 - Use Device Manager to manually install driver.
 - Manufacturer installation utility.
 - Sometimes software needs to be installed before hardware attached

Installation

- Ensure the PC is powered off
- Install the card into correct slot
- Connect power if card requires it
- Boot up the PC. Drivers should be automatically installed
- If you have problems:
 - check BIOS settings
 - Use provided utility or manufacturers website

Storage Devices

- HDD Hard Disk Drive
 - Permanent storage
 - Quick Access
 - Magnetic and/or Solid State Device
- All HDD systems have the following components:
 - Controller. Interfaces the system to the actual HDD. Controls data flow to and from device.
 - Hard Disk (The physical storage medium)
 - Magnetic ones use Platters for storage
 - Host Bus Adapter (HBA)
 - Converts signals from the controller to signals the processor understands
 - Built into Motherboards

How to differentiate between SATA and PATA

SATA drive

(has card-edge connector)

PATA drive (has pin connector)

PATA power cable

SATA power cable

PATA data cable

HDD interfaces

- IDE (PATA) obsolete
- ATA/100 standard
 - max transfer speed of 100MBps
- ATA/133 and ATA/167
 - rare

HDD Anatomy

HDD Internals

- Hermetically Sealed
- Data stored on platter surface
- Platters spun (RPM)
- Low level formatting to map bad track and sectors
- A sector stores 512 bytes

HDD

- Capacity is defined by the number of sectors
- BIOS is critical in the read/write process
- BIOS must support number of sectors
- CHS Cylinders/Heads/Sectors
 - The number of sectors on each track
 - The number of read/write heads
 - The number of cylinders (number of tracks on platter surface)

HDD Speeds

- HBA (Host Bus Adapter) speeds getting faster
- Increase platter speed to get more information
- Typical speeds:
 - 5400rpm
 - 7200rpm
 - 10000rpm (also known as 10K)
 - 12000rpm
 - 15000rpm
- Higher speeds produce more heat and consume more energy
- Fastest Platter drives slower than Solid State Drives

HDD Sizes

- Most Common
 - 2.5" and 3.5"
 - 1.8"
- Rare
 - 5.25"

SSD

- Faster, much faster
- 6GB/s Bus
- SATA bus is bottleneck!
- Less power consumption (and therefore less heat)
- Silent
- Reliable (no moving parts)
- Shock resistant
- High Density of storage per CM

SSD

- Expensive per byte
- Limited write operations
 - Increasing number on later devices
 - TBW (Terra Bytes Written)
 - https://crystalmark.info/en/software/crystaldiskinfo/
 - Don't defrag them
 - Lower capacity (at present) than conventional drives
 - https://www.ontrack.com/en-gb/blog/how-long-do-ssds-really-last
 - https://www.youtube.com/watch?v=hyHMuAdjzfl

Hybrid Drive

- Combination of Platter and SSD
- Uses SRT (Intel's Smart Response Technology)
 - Identifies most used data and high value data
 - SSD stores a copy of the most used
- Data randomly accessed will see no performance improvement
- Data accessed for first time not on SSD portion, only repeated access identifies it for SSD storage.
- SSHD (Solid State Hybrid Drive) more flash memory

M.2 Storage

- Pronounced "M dot 2"
- Ultra small expansion
- Its a form factor, not a bus
- NGFF

(Next generation form factor)

• M.2 Wi-Fi, Bluetooth, GPS,NFC not just PCIe and SATA

Supports Different Sizes M.2 SSD Drives

M.2 Keys

• Cards keyed so that they only fit in a slot type

Module Key	Common Interfaces	Typical Usage
A	USB 2.0, PCIe x2	Wireless (Wi-Fi, Bluetooth)
В	SATA, PCIe x2, USB 2.0 and 3.0	SATA and PCIe x2 interfaces
E	PCIe x2, USB 2.0	Wireless
М	PCIe x4, SATA	PCIe x4 SSDs

• Designated Width and length 2240 is 22mm wide, 40mm long

"B & M key" edge connector

M.2 PCIe Cards

- PCIe faster than SATA
- Max 960Gb
- 2.4GBps read
- 1.56GBps write

NVMe (Non-Volatile Memory express)

- Supported by Intel, Samsung, Dell, SanDisk, and Segate.
- Open Standard to optimise data transfer speeds
- 3.5GBps (SATA III SSD limited to 600MBps)
- PCIe slot support (up to 4 lanes)
- Motherboard must support if used as boot drive
- https://www.howtogeek.com/404627/what-are-nvme-d rives-and-should-you-buy-one/

NVMe

2

Optical Storage Drives

- Blu-ray Disk (BD)
- Digital Versatile(or video) Disk (DVD)
- Compact Disk (CD)

CD-ROM / DVD / BR

• CD-ROM

- Long term storage
- Data cannot be erased or changed
- Approx 700MB capacity

• DVD

- Single sided 4.7GB
- Double sided 9.4GB
- Double Layer Single Side 8.5GB (DVD-DL)
- Double sided, Double Layer 17.1GB
- BR
 - Higher Density of information
 - Single Layer 25GB
 - Single Side Double Layer 50GB
 - Doublee Side Double Layer 100GB
 - Up to 4 layers have been demonstrated in laboratory conditions

Optical Disc Structure and Capacity Comparison

Copyright © 2017, Panasonic Corporation

Optical Drive Data Rates

- Rated in transfer speed
- First CD-ROMs transferred at same rate as audio CDs, 150KBps 1x
 - 2x, 300KBps
- DVD-ROM
 - 1x 1.4 MBps
 - 9x faster than CD
 - 24x common rate
- BR
 - 1x 4.5 Mbps
 - 3.25x faster than DVD
 - Approx 30x CD rate
 - 2x for playing films

Recordable Discs

- CDFS Compact Disk File System
- Laser power varies
 - Melts the surface where data is stored
 - One power level neutralises the surface rather than burning it

Recordable Disks

- CR-R (Compact Disk Recordable)
- CD-RW (Compact Disk Rewritable)

Recordable Disks

- DVD+R, DVD-R, DVD+RW, DVD-RW, DVD-R DL and DVD+R DL
- Capacities
 - 4.7 GB (single-sided/single layer)
 - 9.4 GB (double-sided/single layer)
 - 8.5 GB (single-sided/dual layer)
 - 17.1 GB (double-sided/dual layer)
- DVD-R
 - Specified by DVD Forum founded by Mitsubishi, Sony, Hitachi, and Time Warner
- DVD+R
 - Specified by DVD+RW Alliance supported by Sony, Yamaha, Philips, and Dell.

Recordable Disks

- Different way the data is recorded and read.
- DVD+R advantages
 - Instantly eject DVDs without having to wait for finalized formatting.
 - Record one DVD disc partially on PC and partially on television.
 - Background formatting while the disc is being formatted, you can simultaneously record on already-formatted portions of the same disc.
 - Enhanced ability to edit filenames, movie and song titles, and playlists.
 - 100 percent compatibility with all other DVD players
- Hybrid drives

Recordable BD Formats

- Blue Ray Disc Association
- Not RW but RE (re-recordable)
 - BD-R and BD-RE
- Generic BD logo

RAID

- Redundant Array of Independent Disks (originally inexpensive)
 - Vendor-Independent Specifications
 - Fault Tolerance on multiple disks
 - Software or Hardware based
 - Hardware based will require additional hardware
 - RAID configuration appears to user as one disk
 - Can be built into motherboard
 - Microsoft in Windows 8 call RAID as Storage Spaces

RAID

Common RAID Levels

- RAID Configurations are also called RAID levels
- 4 Common Levels
 - RAID 0
 - RAID 1
 - RAID 5
 - RAID 10
- Other levels not considered in A+
- https://www.youtube.com/watch?v=U-OCdTeZLac

RAID Type	Description
RAID 0	 Implements <u>striping</u>, which is the process of spreading data across multiple drives. Striping can dramatically improve read and write performance. Provides no fault tolerance because the data is spread across multiple drives, if any one of the drives fails, you will lose all of your data. You need at least two physical disk drives to implement striping. The largest size RAID-0 partition that can be created is equal to the smallest available individual partition times the number of drives in the set.
RAID 1	 Two identical drives used for mirroring or duplexing. Mirrored drives share a controller. Duplexed drives have individual controllers. Provides redundancy since each drive has the same data on it.
RAID 5	 Spreads data and parity information across multiple drives. Minimum of three drives needed for implementation. Parity information used to reconstruct data from failed drives.
RAID 10	 Sometimes called RAID 1+0 Combination of RAID 0 and RAID 1. Striping and mirroring to provide both performance and fault tolerance. Minimum of four disks needed for implementation.

Removable Storage and Media

- Tape Backup
 - Hold more data than other mediums
 - Up to 12TB (192 TB being developed)
 - Batch archival storage, not interactive storage
 - Were considered most reliable
 - Once most common archive method
 - Relatively fast

Flash Memory

- Memory Cards
- USB keys/sticks
- Name from the ease of electrically altering the data

 https://photographylife.com/understanding-memo ry-cards

SD Cards

- SD Secure Digital
- miniSD
- microSD
- Use adapters for compatibility

USB Flash Drives

- Most popular type of removable solid state storage
- Known by many names
- Wide range of sizes (5 mm 50 mm in length)
- Modern units up to 2 TB in storage capacity
- Data transfer rate depends on the USB version
 - Currently up to 420 MB/s read, 380 MB/s write

Device

Specifications

Compact Flash (CF) card

- Flash memory card that is 43 mm long by 36 mm wide and often used in portable devices for additional storage.
- Type I: 3.3 mm thick; Type II: 5 mm thick.
- 50-pin contact
- Speed: 66 MBps up to 1 Gbps.
- Data storage: 100 GB up to 1 TB.

- Flash memory card similar in size to CF cards (44 mm long by 37 mm wide by 0.76 mm thick).
- Often used for additional storage in digital cameras, digital recorders, and older PDAs.
- Speed: Up to 8 MBps.
- Data storage: Up to 128 MB.

SmartMedia (SM) card

Device

Specifications

Dimensions:

•

•

٠

٠

.

Secure Digital (SD) memory card

Dimensions:

• Original: 32 mm long by 24 mm wide by 1.5 mm thick.

Original: 32 mm long by 24 mm wide by 2.1 mm thick.

MicroSD: 15 mm long by 11 mm wide by 1 mm thick.

MiniSD: 21.5 mm long by 20 mm wide by 1.4 mm thick.

- RS-MMC and MMCmobile: 16 mm long by 24 mm wide by 1.5 mm thick.
- MMCmini: 21.5 mm long by 20 mm wide by 1.4 mm thick.
- MMCmicro: 12 mm long by 14 mm wide by 1.1 mm thick.
- Speed: Up to 52 MBps.

Speed: 10 to 20 MBps.

Data storage: Up to 2 TB.

- Data storage: Up to 8 GB.
- Often compatible with SD card readers.

MultiMediaCard (MMC)

Swapping Storage

- Hot Swappable
 - Insert and remove with power on
- Cold Swappable
 - System power must be off
- Warm Swappable
 - USB flash drives
 - File system needs to close files before removal
 - Incorrect removal can cause data loss
 - Can be removed with power on if correctly closed

Power Supply

- Converts AC to required voltages (normally DC)
- Often called the "PSU"

PSU

- Never repair, replace
 - Modular Power Supply
- Input 110v or 240v AC
- Output +3.3v, +5v, -5v, +12v, and -12v DC
- Each output is called a Rail
- Dual Rail
 - One for peripherals
 - One for CPU

Redundant Power Supply (RPS)

- Multiple PSU's
 - Not in Laptops!
 - Rare in desktops
 - For the possibility of one failing
 - Sometimes the second one could be smaller
- Battery backup
 - Uninterruptable Power Supply (UPS)
 - Also acts as a surge suppressor
 - Contain batteries to provide power in the event of power failure
 - Internal fuses to protect loading
 - Check batteries regularly!

Power and Voltage

- PSU rated in Watts
- Capacity of PSU to deliver the voltage
- Most PSUs 200W to 500W
- Power = Voltage * Amps

Motherboard Power Connections

4/8-pin 12V (CPU) power connector

CPU fan connector

Power Connectors

- Main Power Connector (24 pins)
- CPU power connector (4 or 8 pins, 12v)
- CPU fan connector (3 or 4 pins)
- Legacy ATA ATX P4 or 4 pin connector
- SATA power connector (15 pins)
- PCle 6 or 8 pin

(Not Included, Specify if Needed)

24 (20+4) Pin

4 Pin (Big)

4 Pin (Small)

15 Pin

ATX12V Connector 4 Pin

EPS12V Connector 8 (4+4) Pin

PCI-E Connector

6 Pin

PCI-E Connector 8 (6+2) Pin

Need to know

- How to instal and configure expansion cards
- Understand HDD components and anatomy
- Understand SSD and their advantages
- Understand optical storage options
- Understand flash drive options
- Understand RAID 0, 1, 5, and 10
- Know PSU connectors
- Know how to replace a PSU