Module Outline

- 1. Understand Cloud and Cloud Services
 - 25 Marks
 - 63%
- Understand disaster recovery and disaster recovery plans
 - 15 Marks
 - 37%
- Pass mark 28/40
- Duration 1 Hour

What is Cloud?

- It is a Network or Internet
 - Remote location.
 - Provides services over Network
- Manipulation, Configuration and accessing online

Deployment Models

Public Cloud

- Systems and services easily accessed by the general public. Less secure.

Private Cloud

 Systems and Services accessed within an organisation. Increased security over public.

Community Cloud

 Systems and Services accessed by a group of organisations. Increased security over public

Hybrid Cloud

 Mixture of public and private clouds. Critical activities normally in a private and non critical in a public cloud.

Critical Activities are performed in private cloud, non Critical are performed in the public cloud

Deployment Models

Web browser, mobile app, thin client

Application

SaaS

CRM, Email, games, virtual desktop

PaaS

Database, web server, deployment tools

laaS

Virtual machines, servers, storage, networks

Platform

Infrastructure

Service Models

- Infrastructure as a Service (laaS)
 - Provides fundamental resources such as physical machines, virtual machines, virtual storage
 - Most basic level of service
- Platform as a Service (PaaS)
 - Provides the runtime environment for applications, development & deployment tools.
 - Database, web server etc
- Software as a Service (SaaS)
 - Provides software applications to end users.
 CRM, Email, Games, Virtual Desktop
- Anything as a Service (XaaS)
 - E.g. Network as a service, business as a service, database as a service

Benefits of Cloud Computing

- Availability access applications using the internet
- Configure applications at any time
- No specific software is required to access.
 - Ubiquitous access
- On Demand Self Service
 - Users can access resources without interaction with the cloud service provider
- Platform Independence
- Highly Cost Effective
- Load Balancing

- Pay as you grow
 - Only pay for the resources used
 - Eliminates wasted resources
 - CPU, Memory, Storage, OS, Security, Network Capacity
- Multi-tenancy
 - Individual environments on the same hardware
 - Each tenant's data is isolated and invisible to others
 - Greater pool of resources available

- Chargeback
 - Accounting strategy
 - Quantify who is using what resources for charging
 - Shifts charge to users (corporate customers mainly) to gives awareness of costs
- Showback
 - Not charged
 - Demonstrates potential cost

- Cloud Bursting
 - Application Deployment model
 - A form of Hybrid Cloud
 - Where application runs in private cloud but bursts into public cloud when the demand for capacity increases.
 - Designed for High performing, non-critical, and non-sensitive data applications

Scalability

- Scalability
 - Increase the capacity to meet the increasing workload
 - Scaling Up increasing the ability of an individual server
 - Scaling out increasing the ability by adding multiple servers to the individual server.
 - Planned growth / contraction

Elasticity

- Elasticity
 - Increasing or reducing the capacity to meet the increasing or reducing workload.
 - ability to "scale up or scale down" the capacity to serve at will dynamically and on demand.
 - Unplanned growth / contraction

Scalability is required for elasticity, but not the other way around

Scalability and Elasticity

- Scalability is required for elasticity, but not the other way around
- Scalability gives you the ability to increase or decrease your resources, and elasticity lets those operations happen automatically according to configured rules.
- Elasticity short term requirements
- Scalability long term planning

Risks of Cloud Computing

- Security and Privacy.
 - Third party provide platform security.
- Lock In.
 - Very difficult to switch between Cloud Service Providers (CSP)
- Isolation Failure
 - Failure of the boundaries may allow other tenants to access other tenants data.
- Management Interface Compromise
 - Interfaces are provided through internet
- Insecure or Incomplete Data Deletion
 - Data may not get deleted as expected. Backups will have the data.
 - Other tenants may delete data.

Cloud Characteristics

- On Demand Self Service
 - Users can login and access at anytime
- Broad Network Access
 - Web based so can be accessed anywhere at anytime
- Resource Pooling
 - Multiple tenants can share a pool of resources. Database, server, memory etc.
- Rapid Elasticity
 - Very easy to scale up or down the provided resources
- Measured Service
 - Resources are monitored to ensure that resources are used efficiently
- Rapid Deployment
 - Service can go live very quickly from development

Cloud Infrastructure

Hypervisor

- Firmware or low level program that acts as the Virtual Machine Manager.
- Single physical instance shared between multiple tenants
- Management Software
 - For maintaining and configuring the infrastructure
- Deployment Software
 - Helps to deploy and integrate the application on the cloud.
- Network
 - Connects the services over the internet. Also (XaaS) Network as a service allows customer to define the routes and protocols used.
- Server
 - Computes sharing of resources. Offers resource allocation and deallocation.
- Storage
 - Distributed file system for storage. Allows storage failure as data held across platforms

Infrastructure Constraints

Transparency

- Resources are shared in cloud.
- Demands mean they need to be shared.
- Application can scale on demand (Load balancing)

Scalability

- Scaling up involves a lot of effort normally. Networks might need reconfiguration, new resources aquired.
- Resources provisioned and de-provisioned easily.

Intelligent Monitoring

 To achieve Transparency and Scalability then the cloud needs to monitor in order to respond to demand

Security

- The data centre must implement secure architecture.
- The control node in a data centre especially needs security

Hypervisor

- Type 1 on bare metal, no host OS
 - Oracle VM
 - Sun xVM
 - ESx vmware
- Type 2 requires a host OS
 - -KVM
 - Microsoft Hyper V
 - Virtual Box

Legislation

- Data Protection Act 1998
- Computer Misuse Act 1990
- Official Secrets Act
- Privacy and Electronic Communications Regulation