Coding and Logic

Be able to recognise features and
benefits of various language types.



Scripting
* Windows Batch files
- Executed by cmd.exe

— Outputs text
- String based

* Windows Script Files
- Executed by PowerShell.exe
- Based on .NET framework
— QOutputs objects
- Object orientated



Algorithm

 Alist of rules to follow in order to solve a problem.
* A set of guidelines that describe how to perform a task.

a sequence of instructions telling a computer what to do

Algorithms need to have their steps in the right order (think of a
recipe)

https://youtu.be/CvSOaYi89B4

Therefore an algorithm is a procedure or formula for solving a
problem, based on conducting a sequence of specified actions


https://youtu.be/CvSOaYi89B4

High Level Language

- Easy for Programmers 00 and Visual Lﬁw
to understand
- Contains Engilish Words FORTRAN C Pascal
High-Level Language
Assembly Language

Low Level Langugae

- The computer’s own
Language
- Binary numbers, in 1’s and 0’s

Machine Language

justcode.me



Low Level Programming Languages

 Assembly Language

- Simple commands called mnemonics
- ADD, SUB, DIV, JMP, MOV, HALT, GO
- Processor dependant (Therefore Hardware Specific)

Difficult for humans to read

Quick execution however
* Drivers written in Assembly Language

Converted into Machine Code (or Object Code) using an
“*Assembler”



Assembly Code

An assembly language program that adds 10 data bytes. Data is stored in memory
location starting from 4460H. The result is 8 bits only and in stored in 4480H.

Label Instruction Comments
LXIH, 4460H; HL register pair points at memory location 4460H
MVIC,0AH; Setsup adecrement counter
MVI A, 0O0H; Clears Accumulator

jumpl;: MOV B, M ; Moves content of memory location to B
ADDB; Adds A and B and stores result at A
INXH; HL pair points at M+1 memory location
DCR C; Decreases C counter by one
JNZ jumpl: ; Until C is not control jumps to jump1:

STA 4480H ; Stores result at 4480H (when C=0)
HLT ; Terminates the program



sCLEAR SCREEH USIHG BIOS

CLE: HOU AX, dsR0H SCROLL SCREEM
M BN @ sEOLDDR
WU CX, oo00 *FROM Assembiy
HOU DX, 1RRFH 1@ 28,79
INT 188 ;CALL BIOS; Eﬂde
sIHPFURTTIRG OF A STRING
KEY: HOU #H, 8l ITHPUT REQUEST
LEA 0%, BUFFER ;POINT T0 BUFFER WMERE STRING STORED
THT 21H sCALL DPOE
RET RETUEM FROMW SUBROURTIHE TO MATH PROGRAM:
: DISPLAY STRING TO SCREEM
SCR: WOU AW, B9 DISPLAY REQUEST
LEA DX . STRING SFOIHT TO STRIMG
IHT 21M ;EALL DOS
RET ;RETURM FROH THIS SUBROUTINE;

g

Assembler :>

LT DR R T LS E R Gl Rl LR R DA ]
RERLGREGTGE LT R ST SRR IO Gl LEALARE |
LTt GG L AL ERRRT AL ERRT AL REY A1 AT
R LGE R SRR SR AL Sl L AL BRARLART |
LGRTGEEGT R TN RRRTSEGRREGERERL-LIGT
WO B0 011 S s e s M e i e
TR AT I e et ei
DT 0801 @110 1 e e e e e e aeai e

Object code

4




High Level Languages

Compiling

acripting/ Interpreted Languages

Perl, Python, Shell, Java

High/Middle Level Languages

C, C++
(What Most Malware Is Written In)

Assembly Language

Intel X86, etc.
(First Layer of Human Readable Code)

Machine Code

Hexadecimal representations of Binary Code Read
By The Operating System

Rinary code

Flow of Compilation
and Dissasembly

Binary code read by hardware
Mot Human Readable

I]issasemhIE|




Procedural Languages

Commands executed In sequence

Uses variables (Names for memory allocation)
Uses Loops to control flow

Top to Bottom Approach

Large programs divided into functions (Modular)
Complied to Object Code for a specific platform



Script Languages

Interpreted, not compiled
Errors discovered at run time
Plain text files

Perl, Php, Python, PowerShell, VBScript,
Javascript



Script Languages

* Perl - #!/usr/bin/perl

* Python - #!/usr/local/bin/python
° :)H D _ <’)php
* VBScript - <script type="text/vbscript">

* Javascript - <script language = "Javascript">



Event Driven Programming

An Approach, not a language

Improves responsiveness, flexibility

Where Program written to Responds to Events
Can be good or bad events

e.g. Mouse Click, Mouse move, Key Down, Key
Up, Key Press etc

Program flow depends on events



Object Orientated Programming

All objects have attributes and behaviour
Objects have both data and behaviour

Procedural Programming Functions have inputs
and outputs

Main difference

- OO0 - attributes and behaviours are contained within a
single object

- Procedural - attributes and behaviours are separated.



Object Orientated Programming

* Encourages Modularisation and code reuse
* Uses Classes to define Objects
* 3 Main Characteristics

- Encapsulation

- Inheritance
— Polymorphism



Classes

* Think of a Television
- We do not have to open the case in order to use |it.
- We have some controls to use it (an interface).

- We can still understand what a television is, even when it’s
connected to an external device (DVD,PC etc).

- It is complete when we purchased it
- Any external requirements are well documented.
- The TV will not crash!



Classes

Provide a well-defined interface - such as the TV remote
control.

Represent a clear concept - such as the concept of a
television.

Be complete and well-documented - the television should have
a plug and should have a manual that documents all features.

The code should be robust - it should not crash, like the
television.



Exercise

K about a dog.
nat makes a dog a dog?

nat does a dog do?



Classes

e States - (or data) are the values that the object has.

* Methods - (or behaviour) are the ways in which the object can
Interact with its data, the actions.

* A Class defines the concept of something

* An instance of a class is called an object

* Objects can be real (a PC) or conceptual (a Database)

* Objects have own identity and are independent from each other



Exercise

* Revisit the dog exercise and decide what Is are
states (or data) and what are methods(or
behaviour)



Encapsulation

* Aterm to describe the hiding of the mechanics of the
object

— Cannot see the actual implementation

- we don't need to understand how the object works.

- Need to understand is the interface that is provided for us.
* Encapsulation is "data-hiding" allowing only certain

parts of an object to be visible and other parts will be
hidden



Encapsulation Advantages

* The user need only understand the interface.

* The user need not understand how the implementation
works or was created.

* The programmer can change the implementation, but
does not need to notify the user.

* If the programmer does not change the interface in any
way, the user will be unaware of any changes.



Encapsulation

Public, Protected, Private
Public methods — defines the interface
Private methods — defines the implementation

Protected — Used in inheritance. Derived Classes can access
protected items.

In Summary:
- Hides the behaviour of an object from its implementation
— Separates what an object looks like from how it implements behaviour



Inheritance

When thinking of a type of object, if we have several descriptions
with some commonality between these descriptions, we can group
the descriptions and their commonality using inheritance to provide
a compact representation of these descriptions.

Object-oriented programming groups the commonalities
— Allows class creation to describe their differences from other classes.

Canine is a type of animal

Dog is a type of Canine

A Jack Russell is a type of dog

My pet dog Jazz is a type of Lancashire Heeler




Inheritance

|

subclass of Animal
superclass of dog and cat

Superclass J

Animal

Mammal /
\Ff’ <

>

Bird

AN

Cat

Chicken

Sparrow

AN

Poodle

Dalmatian

;;’S'ubclass }




Inheritance

* Super Class sometimes called a Base Class
e Sub Class sometimes called a derived class



Inheritance

* Objects inherit a behaviour and can add further
specialised behaviour

* Objects can Inherit a behaviour and replace it

e Cuts down on the amount of code that needs to
be written and debugged

e Promotes Code reuse



Polymorphism

e \WWhen a class inherits from another class it
Inherits both the states and methods of that
pase class

* Polymorphism means "multiple forms"

* There are two forms of polymorphism, over-
riding and over-loading.



Polymorphism - OverRiding

* A derived class inherits its methods from the base class. It may
be necessary to redefine an inherited method to provide specific
behaviour for a derived class - and so alter the implementation.

* Over-riding Is the term used to describe the situation where the
same method name is called on two different objects and each
object responds differently.

* Over-riding allows different kinds of objects that share a common
behaviour to be used in code that only requires that common
behaviour.



Polymorphism - Overloading

* The same method name can be used, but the number of
parameters or the types of parameters can differ, allowing
the correct method to be chosen by the compiller.

* Consider a simple Add function:

- Adding two integers — add(int a, int b)
- Adding two floats — add(float a, float b)
- Adding three integers - add(int a, int b, int c)



OO Terms

* OBJECT-ORIENTED ANALYSIS: Examines the requirements
of a system or a problem from the perspective of the classes
and objects found in the vocabulary of the problem domain

* OBJECT-ORIENTED DESIGN: Defines systems as made of
objects and classes, specifying their relationships (like
iInheritance) and interactions.

* OBJECT-ORIENTED PROGRAMMING: Implementing a
programs with a collection of objects using classes.



Advantages and Disadvantages

* Advantages
- Code reuse
— Code uniqueness using inheritance & encapsulation
— Code Maintainability
— Code Independence using encapsulation
— Code highly organised and modular

* Disadvantages
- Programs are usually larger as inheritance is resolved at run time
- Programs can be slower, partly due to the modular implementation



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

