
  

Coding and Logic

Be able to recognise features and 
benefits of various language types.



  

Scripting
● Windows Batch files

– Executed by cmd.exe
– Outputs text
– String based

● Windows Script Files
– Executed by PowerShell.exe
– Based on .NET framework
– Outputs objects
– Object orientated



  

Algorithm
● A list of rules to follow in order to solve a problem.
● A set of guidelines that describe how to perform a task. 
● a sequence of instructions telling a computer what to do
● Algorithms need to have their steps in the right order (think of a 

recipe)
● https://youtu.be/CvSOaYi89B4
● Therefore an algorithm is a procedure or formula for solving a 

problem, based on conducting a sequence of specified actions

https://youtu.be/CvSOaYi89B4


  



  

Low Level Programming Languages
● Assembly Language 

– Simple commands called mnemonics
– ADD, SUB, DIV, JMP, MOV, HALT, GO
– Processor dependant (Therefore Hardware Specific)

● Difficult for humans to read
● Quick execution however
● Drivers written in Assembly Language
● Converted into Machine Code (or Object Code) using an 

“Assembler”



  

Assembly Code

Label Instruction Comments
LXI H, 4460H ; HL register pair points at memory location 4460H
MVI C, 0A H ; Sets up a decrement counter
MVI A, 00H ;

jump1: MOV B, M ; Moves content of memory location to B
ADD B ; Adds A and B and stores result at A
INX H ;
DCR C ; Decreases C counter by one
JNZ jump1: ;
STA 4480H ;
HLT ; Terminates the program

 An assembly language program that adds 10 data bytes. Data is stored in memory 
location starting from 4460H. The result is 8 bits only and in stored in 4480H.

Clears Accumulator

HL pair points at M+1 memory location

Until C is not control jumps to jump1:
Stores result at 4480H (when C=0)



  



  



  

Procedural Languages
● Commands executed in sequence
● Uses variables (Names for memory allocation)
● Uses Loops to control flow
● Top to Bottom Approach
● Large programs divided into functions (Modular)
● Complied to Object Code for a specific platform



  

Script Languages
● Interpreted, not compiled
● Errors discovered at run time
● Plain text files
● Perl, Php, Python, PowerShell, VBScript, 

Javascript



  

Script Languages
● Perl - #!/usr/bin/perl
● Python - #!/usr/local/bin/python
● PHP - <?php
● VBScript - <script type="text/vbscript">
● Javascript - <script language = "Javascript">  



  

Event Driven Programming
● An Approach, not a language
● Improves responsiveness, flexibility
● Where Program written to Responds to Events
● Can be good or bad events
● e.g. Mouse Click, Mouse move, Key Down, Key 

Up, Key Press etc
● Program flow depends on events



  

Object Orientated Programming
● All objects have attributes and behaviour
● Objects have both data and behaviour
● Procedural Programming Functions have inputs 

and outputs
● Main difference

– OO - attributes and behaviours are contained within a 
single object

– Procedural - attributes and behaviours are separated.



  

Object Orientated Programming
● Encourages Modularisation and code reuse
● Uses Classes to define Objects
● 3 Main Characteristics

– Encapsulation
– Inheritance
– Polymorphism



  

Classes
● Think of a Television

– We do not have to open the case in order to use it.
– We have some controls to use it (an interface).
– We can still understand what a television is, even when it’s 

connected to an external device (DVD,PC etc).
– It is complete when we purchased it
– Any external requirements are well documented.
– The TV will not crash!



  

Classes
● Provide a well-defined interface - such as the TV remote 

control.
● Represent a clear concept - such as the concept of a 

television.
● Be complete and well-documented - the television should have 

a plug and should have a manual that documents all features.
● The code should be robust - it should not crash, like the 

television.



  

Exercise
● Think about a dog. 

– What makes a dog a dog?
– What does a dog do?



  

Classes
● States - (or data) are the values that the object has.
● Methods - (or behaviour) are the ways in which the object can 

interact with its data, the actions.
● A Class defines the concept of something
● An instance of a class is called an object
● Objects can be real (a PC) or conceptual (a Database)
● Objects have own identity and are independent from each other  



  

Exercise
● Revisit the dog exercise and decide what is are 

states (or data) and what are methods(or 
behaviour)



  

Encapsulation
● A term to describe the hiding of the mechanics of the 

object
– Cannot see the actual implementation
– we don't need to understand how the object works. 
– Need to understand is the interface that is provided for us.

● Encapsulation is "data-hiding" allowing only certain 
parts of an object to be visible and other parts will be 
hidden



  

Encapsulation Advantages
● The user need only understand the interface.
● The user need not understand how the implementation 

works or was created.
● The programmer can change the implementation, but 

does not need to notify the user.
● If the programmer does not change the interface in any 

way, the user will be unaware of any changes. 



  

Encapsulation
● Public, Protected, Private
● Public methods – defines the interface
● Private methods – defines the implementation
● Protected – Used in inheritance. Derived Classes can access 

protected items.
● In Summary:

– Hides the behaviour of an object from its implementation
– Separates what an object looks like from how it implements behaviour



  

Inheritance
● When thinking of a type of object, if we have several descriptions 

with some commonality between these descriptions, we can group 
the descriptions and their commonality using inheritance to provide 
a compact representation of these descriptions.

● Object-oriented programming groups the commonalities
– Allows class creation to describe their differences from other classes.

● Canine is a type of animal
● Dog is a type of Canine
● A Jack Russell is a type of dog
● My pet dog Jazz is a type of Lancashire Heeler



  



  

Inheritance
● Super Class sometimes called a Base Class
● Sub Class sometimes called a derived class



  

Inheritance
● Objects inherit a behaviour and can add further 

specialised behaviour
● Objects can Inherit a behaviour and replace it
● Cuts down on the amount of code that needs to 

be written and debugged
● Promotes Code reuse



  

Polymorphism
● When a class inherits from another class it 

inherits both the states and methods of that 
base class

● Polymorphism means "multiple forms"
● There are two forms of polymorphism, over-

riding and over-loading.



  

Polymorphism - OverRiding
● A derived class inherits its methods from the base class. It may 

be necessary to redefine an inherited method to provide specific 
behaviour for a derived class - and so alter the implementation.

● Over-riding is the term used to describe the situation where the 
same method name is called on two different objects and each 
object responds differently.

● Over-riding allows different kinds of objects that share a common 
behaviour to be used in code that only requires that common 
behaviour.



  

Polymorphism - Overloading 
● The same method name can be used, but the number of 

parameters or the types of parameters can differ, allowing 
the correct method to be chosen by the compiler.

● Consider a simple Add function:
– Adding two integers – add(int a, int b)
– Adding two floats – add(float a, float b)
– Adding three integers - add(int a, int b, int c)



  

OO Terms
● OBJECT-ORIENTED ANALYSIS: Examines the requirements 

of a system or a problem from the perspective of the classes 
and objects found in the vocabulary of the problem domain

● OBJECT-ORIENTED DESIGN: Defines systems as made of 
objects and classes, specifying their relationships (like 
inheritance) and interactions.

● OBJECT-ORIENTED PROGRAMMING: Implementing a 
programs with a collection of objects using classes.



  

Advantages and Disadvantages
● Advantages

– Code reuse
– Code uniqueness using inheritance & encapsulation
– Code Maintainability
– Code Independence using encapsulation
– Code highly organised and modular

● Disadvantages
– Programs are usually larger as inheritance is resolved at run time
– Programs can be slower, partly due to the modular implementation
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