

Coding and Logic

Understand the features and applications of a
range of coding and logic used in support roles.

Command Line Scripting
● Describe Scripting at the command line when

supporting server administration
– Unix Shell
– Power Shell
– Batch Scripting

Coding and Language
● Recognise the features and benefits of the following language

types:
– Low Level

● Assembler
● Machine Code

– High Level
● Procedural
● Object Orientated
● Event Driven

Application and Lifecycle
management (ALM)

● Describe the functions of each stage of ALM
● Application Development Phases

– Requirements
– Design
– Build

● Service Management Phases
– Optimise
– Operate
– Deploy

● Application Management

Algorithms and Data Structures
● Recognise the practical Applications of:
● Algorithms
● Flow of Control

– Branching
– Looping
– Iteration

● Data Structures
– High Level
– Floating Point
– Strings
– Integers

Webpage Development
● Recognise fundamental elements of website development
● Environment

– Web Server
– Database
– Web Browser

● Development tools/options
– Coding web pages with text files
– Content Management Systems (CMS)

● Web page elements
– CSS
– HTML
– XML

● Security
– Secure Data Transit
– Authentication and authorisation
– Certificates

Scripting
● Windows Batch files

– Extension of .bat
– Set of commands for the command line
– e.g. copying files

● Windows Script Files
– Extension of .ps1
– Set of commands for the power shell - far more powerful than batch
– Server/PC management (copied idea from Linux Script Files)
– e.g. dynamic back-ups or log all users out

● Linux Script Files
– Extension of .sh
– Has always been part of the OS
– Server/PC management

Command Line Scripting
● PowerShell (Start→Windows Power Shell)

– Will run command prompt commands

● Commands are called cmdlets
● Can call windows programs – notepad.exe

Power Shell Exercise 1
● Start Power Shell
● Type write-host “Hello World”
● Options can be found by typing help write-host
● Type write-host -foregroundcolor yellow “Hello

World”
● Get Power shell to with “Hello World” with blue text

on a yellow back ground.
● What does help clear-host -online do?

Power Shell Aliases
● Linux and Windows users get commands mixed

up between the two platforms
● pwd used often in linux
● Type help pwd (it is an alias for get-location)

Power Shell Variables
● Variables are named memory locations that can be used to

store (remember) data that can vary
● In power shell they are referenced using $
● Variables can be the following data types:

– Integers (whole positive or negative numbers)
– doubles (positive or negative numbers with decimal places)
– strings (a list of characters)
– arrays (list of other variables referenced by an integer index)
– hash tables (key pair values)
– objects (a complex set of variable types)

Power Shell Variables
Ignore the prompt and only type what follows the PS C:\>

PS C:\> $a=5

PS C:\> $b=6

PS C:\> $a

5

PS C:\> $b

6

PS C:\> $a+$b

11

PS C:\>

Power Shell Variables
PS C:\> [int] $b=7

PS C:\> $a=4

PS C:\> $a.getType().Name

Int32

PS C:\> $a+$b

11

PS C:\> $a="4"

PS C:\> $a.getType().Name

String

PS C:\> $a+$b

47

PS C:\> $b+$a

11

PS C:\>

Can you explain the last result?

../../../

Power Shell Variables

PS C:\> $day="Saturday"

PS C:\> $day

Saturday

PS C:\>

Power Shell User Input
● Use read-host (help read-host -online)

PS C:\> $a=2018

PS C:\> $year = read-host "What year were you born? "

What year were you born? : 1969

PS C:\> $age = $a-$year

PS C:\> write-host "Your age is " $age

Your age is 49

PS C:\>

Power Shell Strings
Can be more than one line

PS C:\> $collegeAddress = "Sheepen Road,

>> Colchester,

>> Essex.

>> Co3 3LL"

PS C:\> $collegeAddress

Sheepen Road,

Colchester,

Essex.

Co3 3LL

Power Shell Special Variables
● $true (if a command succeeds it returns true)
● $false
● $null

Power Shell Arrays
● Arrays are variables with multiple values
● Index starts at 0

PS C:\> $city=("Paris","London","Munich","Rome","Geneva")

PS C:\> $city[2]

Munich

PS C:\> $city.Length

5

Power Shell Hashes
● Arrays of key-value pairs

PS C:\>
$city=@{"Paris"=970;"London"=1765;"Munich"=309;"Rome"=908;
"Geneva"=321}

PS C:\Users\bryan> $city

Name Value
---- -----
London 1765
Geneva 321
Paris 970
Munich 309
Rome 908

Power Shell Hashes Adding Values
PS C:\> $city.Add("Glasgow",125)

PS C:\> $city

Name Value
---- -----
Glasgow 125
Paris 970
Munich 309
Rome 908
London 1765
Geneva 321

Power Shell
Accessing Hash using a Key

PS C:\> $city."London"

1765

PS C:\> $uk="London"

PS C:\> $city.$uk

1765

Power Shell
Accessing Hash from user input

PS C:\> $uk = read-host "Enter the Capital of
England"

Enter the Capital of England: London

PS C:\> $city.$uk

1765

Power Shell Deleting a variable
● Quickest way is to set the variable to null

PS C:\> $city

Name Value
---- -----
Glasgow 125
Paris 970
Munich 309
Rome 908
London 1765
Geneva 321

PS C:\> $city=$null

PS C:\> $city
PS C:\>

Exercise
● Create a variable $a and assign the value 3 to it
● Use write-host to display the value of $a
● Create a variable $b and assign the value 3.6 to it
● Use write-host to display the value of $b
● Display the variable type of $a and $b
● Create a variable $c and assign the value “3.6” to it, include the

quotes
● Display the variable type of $c
● Assign to variable $d the sum of $a and $b

Power Shell Environment
● Environment describes the settings
● Has built in variables

PS C:\> get-item env:\username

Name Value
---- -----
USERNAME bryan

● Easier to use

PS C:\> $env:username

bryan

Power Shell Redirection
● Allows the output to be sent to file
● Use > to send (redirect output) to a file

PS C:\>
$city=@{"Paris"=970;"London"=1765;"Munich"=309;"Rome"=908;"Geneva"=321}
PS C:\> $city
Name Value
---- -----
London 1765
Geneva 321
Paris 970
Munich 309
Rome 908

PS C:\> $city > city.txt

Power Shell Files
● get-content <file> reads the content of the file
● Can assign to a variable
● $variable = get-content <file>

PS C:\> $content= get-content city.txt

Power Shell Pipes
● Screen is called standard output
● | is the pipe symbol and redirects from standard output
● Takes the output of the left command and pipes it to the

right command

PS C:\> $content | out-file test.txt

PS C:\> get-content test.txt

Power Shell more Pipes

PS C:\> $content = get-content city.txt

PS C:\> $content.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True Object[] System.Array

● What can you do with an object type?

PS C:\> $content | gm

Power Shell get-member
● get-member (or alias gm)
● Returns the properties of that type and what

you can do with that type

PS C:\> $name="bryan"

PS C:\> $name | gm

Power Shell Exercise
● Use notepad.exe to create a file that contains your address. Call the file

address.txt
● Assign the contents of address.txt to $address
● Display the contents of $address
● Create a multiline string variable called $workAddress with your work address
● Create a variable $myName with your first and last name
● Pipe $myName to gm and work out the methods to make $myName uppercase
● Display the name in uppercase and lowercase

Power shell Scripts
● Save a series of commands to a file
● Invoke repeatedly
● Files have the .ps1 extension
● Built in integrated environment
● Start → Accessories → Windows Power Shell ISE

Power Shell Scripts
● # at the start of a line is a comment
● Write commands in script to be executed

sequentially
●

Power Shell Scripts
#This is a comment. Always comment your scripts to ease maintenance

###Store today’s year in a variable called “year”
$year=(get-date -Uformat “%Y”)

###Ask the user for their name and store the inputted value in “name”
$name=read-host “Please enter your name?”

###Ask the user for their birth year and store the inputted value in
“birthYear”
$birthYear=read-host “Please enter the year you were born?”

$age=$year-$birthYear

###Respond to the user with the variables
write-host “Hello $name. This year you will be $age”

Power Shell Logic and Loops
● A loop allows script to run parts of the script

more than once
● Loop is dependant on something or a value
● Saves time for mundane processes

if
● Tests a condition and executes code IF

statement is true

if (statement)
{

#enter code to execute
}

Simple IF statements
$score = read-host "What score did you get in the exam?"

if($score -lt 50)
{
 write-host "The score $score is a fail."
}

if($score -gt 50)
{
 write-host "The score $score is a pass."
}

● Note: there is an error in this scripts logic. What is it?

If else
$score = read-host "What score did you get in the exam?"

if($score -lt 50)
{
 write-host "The score $score is a fail."
}
else
{
 write-host "The score $score is a pass."
}

Nested IF
$score = read-host "What percentage did you get in the exam?"

if($score -lt 50)

{

 write-host "$score% is a fail."

}

else

{

 write-host "$score% is a pass."
#This is a nested if – an if inside an if

 if($score -gt 90)

 {

 write-host "$score% is a really good mark."

 }

}

Do Until

Do
{

code
}until (the condition is true)

● The code will always be run

Do Until Example
Clear-Host

$strPassword ="123"

$strQuit = "No"

Do {

 $Guess = Read-Host "`n Guess the Password"

 if($Guess -eq $StrPassword)

 {

 " Correct guess"; $strQuit ="n"

 }

 else

 {

 $strQuit = Read-Host " Wrong `n Do you want another guess? (Y/N)"

 }

} # End of 'Do'

Until ($strQuit -eq "N")

"`n Program Completed"

Do While

Do {
code

}while (the condition is true)
● The code will always be run

Do While Example
Clear-Host

$strPassword ="house"

$strQuit = "Guess again"

Do
{

 $Guess = Read-Host "Guess the Password"

 if($Guess -eq $StrPassword)

 {

 " Correct guess"; $strQuit ="n"

 }

 else

 {

 $strQuit = Read-Host " Wrong - Do you want another guess? (Y/N)"

 }

} # End of 'Do'

While ($strQuit -ne "N")

"Program Completed"

While Loops
● Easier than Do While/Until

while (the condition is true)

{

 code

}
● Note code might never get run

While ExampleClear-Host

$strPassword ="house"

$strQuit = "Guess again"

While ($strQuit -ne "N")

{

 $Guess = Read-Host "Guess the Password"

 If($Guess -eq $StrPassword)

 {

 " Correct guess"; $strQuit ="n"

 }

 else

 {

 $strQuit = Read-Host " Wrong - Do you want another guess? (Y/N)"

 }

} # End of block statement

"Program Complete."

For Loops
● Repeats a block of code a number of times
● For (<initialisation>; <condition>; <iterator>)

{
 code
}

● For help type “Get-Help about_For”

More For Loops
● The initializer section sets the initial conditions. The statements in this section

run only once, before you enter the loop.
● The condition section contains a boolean expression that’s evaluated to

determine whether the loop should exit or should run again.
● The iterator section defines what happens after each iteration of the body of

the loop.
● The body of the loop consists of a statement, an empty statement, or a block

of statements enclosed in braces.
● To set up a for loop that repeats forever, you can leave the initializer, condition

and iterator blank:
for (; ;)
{
 code
}

For Loop Example
$table = 5

$count = 0

for ($i = $count; $i -le 100; $i+=5)

{

 write-host $count " x " $table " = " $i

 $count+=1 #same as $count = $count +1

}

break command
● You can break out of a for loop by using the break keyword

clear-host

$table = 5

$count = 0

for ($i = $count; $i -le 100; $i+=5)

{

 write-host "in loop before if"

 if ($i -eq 25)

 {

 write-host "in if before break"

 break;

 write-host "in if after break" #this line will never be reached

 }

 write-host "in loop after if"

 write-host $count " x " $table " = " $i

 $count+=1 #same as $count = $count +1

}

continue command
● you can step to the next iteration by using the continue keyword.

clear-host; $table = 5; $count = 0

for ($i = $count; $i -le 100; $i+=5)

{

 write-host "in loop before if"

 if ($i -eq 25)

 {

 write-host "in if before continue"

 continue;

 write-host "in if after continue" #this command is never reached

 }

 write-host "in loop after if"

 write-host $count " x " $table " = " $i

 $count+=1 #same as $count = $count +1

}
● I know this ruins the output, but that helps to demonstrate the command

More Date and Time
● Date and Time values held in a specific variable type called datetime
● From the powershell prompt type:

[datetime] $birthday=”3:15pm 19 May 1969”

$birthday

● The [datetime] tells the environment the type of variable
● Whenever two datetime values are subtracted from each other, the

result is of type timespan

DateTime example

clear-host

$birthday ="3:15pm 19 May 1969"

$birthday

[datetime]$birthday ="3:15pm 19 May 1969"

$birthday

timespan
clear-host

[datetime]$birthday ="3:15pm 19 May 1969"

[datetime]$today = get-date

$age = $today - $birthday

$age
● $age is automatically of type timespan

Objects
● $age is an object
● Object.property to get values

clear-host
[datetime]$birthday ="3:15pm 19 May 1969"
[datetime]$today = get-date
$age = $today - $birthday
$age.Days

Exercises
● Display how old a person is in years using the timespan object
● With if statements calculate if you have lived for

– A million second
– A million minutes
– A million hours

● Write a times table program
– Ask the user for the table to be calculated
– Ask the user how many times they want to calculate
– Implement using one of the while loops
– Implement using a for loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

