
  

Coding and Logic

Understand the features and applications of a 
range of coding and logic used in support roles.



  

Command Line Scripting
● Describe Scripting at the command line when 

supporting server administration
– Unix Shell
– Power Shell
– Batch Scripting



  

Coding and Language
● Recognise the features and benefits of the following language 

types:
– Low Level

● Assembler
● Machine Code

– High Level
● Procedural
● Object Orientated
● Event Driven



  

Application and Lifecycle 
management (ALM)

● Describe the functions of each stage of ALM
●  Application Development Phases

– Requirements
– Design
– Build

● Service Management Phases
– Optimise
– Operate
– Deploy

● Application Management



  

Algorithms and Data Structures
● Recognise the practical Applications of:
● Algorithms
● Flow of Control

– Branching
– Looping
– Iteration

● Data Structures
– High Level
– Floating Point
– Strings
– Integers



  

Webpage Development
● Recognise fundamental elements of website development
● Environment

– Web Server
– Database
– Web Browser

● Development tools/options
– Coding web pages with text files
– Content Management Systems (CMS)

● Web page elements
– CSS
– HTML
– XML

● Security
– Secure Data Transit
– Authentication and authorisation
– Certificates



  

Scripting
● Windows Batch files

– Extension of .bat
– Set of commands for the command line
– e.g. copying files

● Windows Script Files
– Extension of .ps1
– Set of commands for the power shell -  far more powerful than batch
– Server/PC management (copied idea from Linux Script Files)
– e.g. dynamic back-ups or log all users out

● Linux Script Files
– Extension of .sh
– Has always been part of the OS
– Server/PC management



  

Command Line Scripting
● PowerShell (Start→Windows Power Shell)

– Will run command prompt commands

● Commands are called cmdlets
● Can call windows programs – notepad.exe



  

Power Shell Exercise 1
● Start Power Shell
● Type write-host “Hello World”
● Options can be found by typing help write-host
● Type write-host -foregroundcolor yellow “Hello 

World”
● Get Power shell to with “Hello World” with blue text 

on a yellow back ground.
● What does help clear-host -online do?



  

Power Shell Aliases
● Linux and Windows users get commands mixed 

up between the two platforms
● pwd used often in linux
● Type help pwd (it is an alias for get-location)



  

Power Shell Variables
● Variables are named memory locations that can be used to 

store (remember) data that can vary
● In power shell they are referenced using $
● Variables can be the following data types:

– Integers (whole positive or negative numbers)
– doubles (positive or negative numbers with decimal places)
– strings (a list of characters)
– arrays (list of other variables referenced by an integer index)
– hash tables (key pair values)
– objects (a complex set of variable types)



  

Power Shell Variables
Ignore the prompt and only type what follows the PS C:\>

PS C:\> $a=5

PS C:\> $b=6

PS C:\> $a

5

PS C:\> $b

6

PS C:\> $a+$b

11

PS C:\> 



  

Power Shell Variables
PS C:\> [int] $b=7

PS C:\> $a=4

PS C:\> $a.getType().Name

Int32

PS C:\> $a+$b

11

PS C:\> $a="4"

PS C:\> $a.getType().Name

String

PS C:\> $a+$b

47

PS C:\> $b+$a

11

PS C:\>

Can you explain the last result?

../../../


  

Power Shell Variables

PS C:\> $day="Saturday"

PS C:\> $day

Saturday

PS C:\>



  

Power Shell User Input
● Use read-host (help read-host -online)

PS C:\> $a=2018

PS C:\> $year = read-host "What year were you born? "

What year were you born? : 1969

PS C:\> $age = $a-$year

PS C:\> write-host "Your age is " $age

Your age is  49

PS C:\>



  

Power Shell Strings
Can be more than one line

PS C:\> $collegeAddress = "Sheepen Road,

>> Colchester,

>> Essex.

>> Co3 3LL"

PS C:\> $collegeAddress

Sheepen Road,

Colchester,

Essex.

Co3 3LL



  

Power Shell Special Variables
● $true (if a command succeeds it returns true)
● $false
● $null



  

Power Shell Arrays
● Arrays are variables with multiple values
● Index starts at 0

PS C:\> $city=("Paris","London","Munich","Rome","Geneva")

PS C:\> $city[2]

Munich

PS C:\> $city.Length

5



  

Power Shell Hashes
● Arrays of key-value pairs

PS C:\> 
$city=@{"Paris"=970;"London"=1765;"Munich"=309;"Rome"=908;
"Geneva"=321}

PS C:\Users\bryan> $city

Name                           Value
----                           -----
London                         1765
Geneva                         321
Paris                          970
Munich                         309
Rome                           908



  

Power Shell Hashes Adding Values
PS C:\> $city.Add("Glasgow",125)

PS C:\> $city

Name                           Value
----                                -----
Glasgow                       125
Paris                             970
Munich                         309
Rome                           908
London                         1765
Geneva                        321



  

Power Shell 
Accessing Hash using a Key

PS C:\> $city."London"

1765

PS C:\> $uk="London"

PS C:\> $city.$uk

1765



  

Power Shell
Accessing Hash from user input

PS C:\> $uk = read-host "Enter the Capital of 
England"

Enter the Capital of England: London

PS C:\> $city.$uk

1765



  

Power Shell Deleting a variable
● Quickest way is to set the variable to null

PS C:\> $city

Name                           Value
----                           -----
Glasgow                      125
Paris                          970
Munich                         309
Rome                           908
London                        1765
Geneva                        321

PS C:\> $city=$null

PS C:\> $city
PS C:\>



  

Exercise
● Create a variable $a and assign the value 3 to it
● Use write-host to display the value of $a
● Create a variable $b and assign the value 3.6 to it
● Use write-host to display the value of $b
● Display the variable type of $a and $b
● Create a variable $c and assign the value “3.6” to it, include the 

quotes
● Display the variable type of $c
● Assign to variable $d the sum of $a and $b



  

Power Shell Environment
● Environment describes the settings
● Has built in variables

PS C:\> get-item env:\username

Name                           Value
----                           -----
USERNAME               bryan

● Easier to use

PS C:\> $env:username

bryan



  

Power Shell Redirection
● Allows the output to be sent to file
● Use > to send (redirect output) to a file

PS C:\> 
$city=@{"Paris"=970;"London"=1765;"Munich"=309;"Rome"=908;"Geneva"=321}
PS C:\> $city
Name                           Value
----                           -----
London                         1765
Geneva                         321
Paris                          970
Munich                         309
Rome                           908

PS C:\> $city > city.txt



  

Power Shell Files
● get-content <file> reads the content of the file
● Can assign to a variable
● $variable = get-content <file>

PS C:\> $content= get-content city.txt



  

Power Shell Pipes
● Screen is called standard output
● | is the pipe symbol and redirects from standard output
● Takes the output of the left command and pipes it to the 

right command

PS C:\> $content | out-file test.txt

PS C:\> get-content test.txt



  

Power Shell more Pipes

PS C:\> $content = get-content city.txt

PS C:\> $content.GetType()

IsPublic IsSerial Name        BaseType
-------- -------- ----                  --------
True     True     Object[]       System.Array

● What can you do with an object type?

PS C:\> $content | gm



  

Power Shell get-member
● get-member (or alias gm)
● Returns the properties of that type and what 

you can do with that type

PS C:\> $name="bryan"

PS C:\> $name | gm



  

Power Shell Exercise
● Use notepad.exe to create a file that contains your address. Call the file 

address.txt
● Assign the contents of address.txt to $address
● Display the contents of $address
● Create a multiline string variable called $workAddress with your work address
● Create a variable $myName with your first and last name
● Pipe $myName to gm and work out the methods to make $myName uppercase
● Display the name in uppercase and lowercase



  

Power shell Scripts
● Save a series of commands to a file
● Invoke repeatedly
● Files have the .ps1 extension
● Built in integrated environment
● Start → Accessories → Windows Power Shell ISE



  

Power Shell Scripts
● # at the start of a line is a comment
● Write commands in script to be executed 

sequentially
●



  

Power Shell Scripts
#This is a comment. Always comment your scripts to ease maintenance

###Store today’s year in a variable called “year”
$year=(get-date -Uformat “%Y”)

###Ask the user for their name and store the inputted value in “name”
$name=read-host “Please enter your name?”

###Ask the user for their birth year and store the inputted value in 
“birthYear” 
$birthYear=read-host “Please enter the year you were born?”

$age=$year-$birthYear

###Respond to the user with the variables
write-host “Hello $name. This year you will be $age”



  

Power Shell Logic and Loops
● A loop allows script to run parts of the script 

more than once
● Loop is dependant on something or a value
● Saves time for mundane processes



  

if
● Tests a condition and executes code IF 

statement is true

if (statement)
{

#enter code to execute
}



  

Simple IF statements
$score = read-host "What score did you get in the exam?"

if($score -lt 50)
{
   write-host "The score $score is a fail."
}

if($score -gt 50)
{
    write-host "The score $score is a pass."
}

● Note: there is an error in this scripts logic. What is it?



  

If else
$score = read-host "What score did you get in the exam?"

if($score -lt 50)
{
    write-host "The score $score is a fail."
}
else
{
    write-host "The score $score is a pass."
}



  

Nested IF
$score = read-host "What percentage did you get in the exam?"

if($score -lt 50)

{

    write-host "$score% is a fail."

}

else

{

    write-host "$score% is a pass."
#This is a nested if – an if inside an if

    if($score -gt 90)

    {

        write-host "$score% is a really good mark."

    }   

}



  

Do Until

Do 
{

code
}until (the condition is true)

● The code will always be run



  

Do Until Example
Clear-Host

$strPassword ="123"

$strQuit = "No"

Do {

               $Guess = Read-Host "`n Guess the Password"

               if($Guess -eq $StrPassword) 

               {

                              " Correct guess"; $strQuit ="n"

               }

               else

               {

                                   $strQuit = Read-Host " Wrong `n Do you want another guess? (Y/N)"

               }

} # End of 'Do'

Until ($strQuit -eq "N")

"`n Program Completed"



  

Do While

Do {
code

}while (the condition is true)
● The code will always be run



  

Do While Example
Clear-Host

$strPassword ="house"

$strQuit = "Guess again"

Do 
{

               $Guess = Read-Host "Guess the Password"

               if($Guess -eq $StrPassword) 

               {

                        " Correct guess"; $strQuit ="n"

               }

               else

               {

                        $strQuit = Read-Host " Wrong - Do you want another guess? (Y/N)"

               }

} # End of 'Do'

While ($strQuit -ne "N")

"Program Completed"



  

While Loops
● Easier than Do While/Until

while (the condition is true)

{

          code

}
● Note code might never get run



  

While ExampleClear-Host

$strPassword ="house"

$strQuit = "Guess again"

While ($strQuit -ne "N") 

{

          $Guess = Read-Host "Guess the Password"

          If($Guess -eq $StrPassword) 

          {

                    " Correct guess"; $strQuit ="n"

          }

          else

          {

                    $strQuit = Read-Host " Wrong - Do you want another guess? (Y/N)"

          }

} # End of block statement

"Program Complete."



  

For Loops
● Repeats a block of code a number of times
● For (<initialisation>; <condition>; <iterator>)

{
          code
}

● For help type “Get-Help about_For”



  

More For Loops
● The initializer section sets the initial conditions. The statements in this section 

run only once, before you enter the loop.
● The condition section contains a boolean expression that’s evaluated to 

determine whether the loop should exit or should run again.
● The iterator section defines what happens after each iteration of the body of 

the loop.
● The body of the loop consists of a statement, an empty statement, or a block 

of statements enclosed in braces.
● To set up a for loop that repeats forever, you can leave the initializer, condition 

and iterator blank:
for (; ; )
{
          code
}



  

For Loop Example
$table = 5

$count = 0

for ($i = $count; $i -le 100; $i+=5) 

{

    write-host $count " x " $table " = " $i

    $count+=1 #same as $count = $count +1

}



  

break command
● You can break out of a for loop by using the break keyword

clear-host

$table = 5

$count = 0

for ($i = $count; $i -le 100; $i+=5) 

{

    write-host "in loop before if"

    if ($i -eq 25)

    {

        write-host "in if before break"

        break;

        write-host "in if after break" #this line will never be reached

    }

    write-host "in loop after if"

    write-host $count " x " $table " = " $i

    $count+=1 #same as $count = $count +1

}



  

continue command
● you can step to the next iteration by using the continue keyword.

clear-host; $table = 5; $count = 0

for ($i = $count; $i -le 100; $i+=5) 

{

    write-host "in loop before if"

    if ($i -eq 25)

    {

        write-host "in if before continue"

        continue;

        write-host "in if after continue" #this command is never reached

    }

    write-host "in loop after if"

    write-host $count " x " $table " = " $i

    $count+=1 #same as $count = $count +1

}
● I know this ruins the output, but that helps to demonstrate the command



  

More Date and Time
● Date and Time values held in a specific variable type called datetime 
● From the powershell prompt type:

[datetime] $birthday=”3:15pm 19 May 1969”

$birthday

● The [datetime] tells the environment the type of variable
● Whenever two datetime values are subtracted from each other, the 

result is of type timespan



  

DateTime example

clear-host

$birthday ="3:15pm 19 May 1969"

$birthday

[datetime]$birthday ="3:15pm 19 May 1969"

$birthday



  

timespan
clear-host

[datetime]$birthday ="3:15pm 19 May 1969"

[datetime]$today = get-date

$age = $today - $birthday

$age
● $age is automatically of type timespan



  

Objects
● $age is an object
● Object.property to get values

clear-host
[datetime]$birthday ="3:15pm 19 May 1969"
[datetime]$today = get-date
$age = $today - $birthday
$age.Days



  

Exercises
● Display how old a person is in years using the timespan object
● With if statements calculate if you have lived for

– A million second
– A million minutes
– A million hours

● Write a times table program
– Ask the user for the table to be calculated
– Ask the user how many times they want to calculate
– Implement using one of the while loops
– Implement using a for loop
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